JFIF   ( %!1!%)+...383,7(-.+  ++-+++++-++-++--+--+-+-------+-++-+--+---+++--+7+-+"F!1AQaq"2BRb#3Sr$CDsT&!Q1Aa"2Rbq ?򉄘ǷLR HR,nNb .&W)fJbMOYxj-\bT2(4CQ"qiC/ " %0Jl"e2V  0SDd2@TV^{cW&F͉x9#l,.XɳvRZ C8S 6ml!@!E! `FS!M #(d)Q lml1ml Ų&x(ʨ2NFmj@D<dN5UN˄uTB emLAy#` ` ` I!I 6āHBxL & J#7BQ.$hv h q+tC"EJ) 8R e2U2Y@j%6PF^4LnNBp"8)4JI-ֲvK ^؊)hz[T5˗",Rҥf8ڤS4ʘ!`D ` X+ L,(hl)*S##`6[`0*L T H*HA@I&&r1kr*r*)N$#L  1#ZFSl `[( ("((he`4 Ch [="A R / 0I`twCDcWh"i) cLad\BcLKHZ"ZEW$Ƚ@A~i^`S *A&h:+c Y6vϕGClRPs.`H`(@<$qDe pL@DpLX, E2MP A  `II m& AQ "AT rbg# g2!SiLj*3L \ G;TFL`K BMy 2S`YLh1 d >-"ZfD^Q DH" RAbEV#Lfq,(rETp64-IJ!*p4F$q;G8DQ/TKP2$jp3KW]FtLtƉ1ol]VBgػJH6 )h61GJR7Nj.Z4piJRDd]t]0dP]:N.b'⹙SvDSz]L,_#ugT&[~?cS^"{Bh{/=ۑxOk̳O59o dar793`)SeYM@\ "$E(Tm&)N2Ih)F5EDed(FS,Pa @!@#@lea HCD$11jCLJqcod S3yd*,lL+QEfsgW1nw)cT#dS HXkFJB"6(ʝH)H"#EZh:Y`khݳh%Sc<mlAko2]gDqQtro=3OƸU9_-t8UvW3sGəg*#:c)><"wc\ASmT|6Ę>9~#1Ƈ~ڒE1vVi# I MM#u$8W 5ǍfƬΜg*Qpi1ȩFOf۔S,/⎯(Lrմ`(Z LsbA \6 6dm[I=!r:REI.wgzG)ԇSbӑxuׇTyyL^e'x^ty4Z&eB]I|v59Jjhm;Ng񷫳n<ϞҼѝjk;׹DlY^ҍ\+x9V!j([cmS.NO6jxNζrm&oײizT$N>?~ Sl-:iڥk\at#E!CL`.O0a*w/WV7/r)DŽt7'Nĵ#7O1 ]{[/-2bA<$&Gm_4t)_>)mjG;V^'k59o>ɌM,ؾf9z6 4v_3T.5V/RD-5 %T5XTޫ4TaZ`U *ƱUƲ UG"5+sJJ2E9#܎kr2G3Bb,XM6H: ?@p!'\4V02aԙ) hbZ]:` ev3ʘ'}!ohȒ*TJjr[RFyQ*#{h{R]J]Lr-.D-.җfo$D ?X0%~1P.Og{cWϫ22&Ϭ_V.W3nmiOl}+!˫#`kR33aUb0-g:qmsέ+0HO|&nhOn+}n5QF_"gvLm/z'+r'n_oC语i|1}Gi|}_D~9JZ_%DVQp\koۅjAs~/c0ksUJi^W9W5!>?O:q|ˣSIB/&K<(lg(%Wg$|LW7vߤW߇q|jef3D H\S6(eJb*@&sTKTW/*@v:.N- @ITʓ1Zg&-eꓝM r]EMס{q$b]'7Z7N:O~lNlP7iͲk)$O^퉢<YSD*hr'Z#5e6t[Fdh AJǔP9P 1\R).Il+jI*,(ܢ22N*OwKFX gc?\mB7iA+εe8 "ġ/p5pW-$މ-[a 5ViAW/V{/&UsF./՞ҕ*)rZg.^_+gt_z-oAbqQn*WlHyZ*\TaEewlLR3ԹȭN}MM}aih"5ܕRT$:~'TcT|*)xGC>n+r{XU xuF"<~67у'fxlf`r3D*#Z1ђfH`2dIWo/qB| 63xxW6^m%Kvg>\>x>!H5Nr8J/FJ9Wx(Hou" S'kWاC\9ְ#^OaҮ+~gnkuЉ,aWU*1 읍jnb|e= :2.UL`Q}YS&gI.c=a`%j:C%2@^>])25/ܙ<lzwɛ)ݣS4h3=J tyϬ.E7 8ڞGZu\_JHsݢϑ}IZ"ӳ=X<Ɖ2{a:{7L+>V}c)*lo Yv&+|L;>+/Sj26K+澡*;>-s"}M2] Ig5aCL*r"&\} #^R.7_Mgf}.ߌy(}Z\gP&ʠHj%</{.]rߙQ`>;5g;u6dԛ %xb|oՋTJ5Ϥ(]XqP>f{Jk2,8'~ZU6tMQsg XKg^2ϓ3},[wo۴I|ܷ%[Ol\Pkr]Y//cg6U⧻/VПi8ys_n<\~cze!!H~x;QJZKȮ^ȧG|cS~8ji,Fo+,y~?pk)u /in3JmkX(Mj1N 4c Epc>BO *LfQO&` c;LjcYf 1ɻ)CLsY^Y5" lP/wuEln&dav,(;'W9ej ku`-KHI՟%ԁʁ 1\}?OjsF^Xn$Ё.օC>D:?I @aGE.ĩ1 $ et~T`߸Ir'RX.Zwc%~U=r>-UaFbǺ?R=Z?i'[ASS;siJrzy>nxu$[_B\4}:r'ҵj1_v-[;y?ֹ0I16 . M%4^!S&t ! h !zQð.bBT ?@]?CHq(rd!.$>/x+bnʎNN#w)` )*f!-ɂ\(طYLHzc`Uq7BfCcE0ԉ4Fم쏠ce5T r͸GVlФ?ѣ} mhrkly.Ts㷖)Mө S^%'g>wk%bP[}j~ǾV#K -Fgv켼ǨgɼeSz/6{M=BPZFu\Q75n3Iݤ.W9QfF{vJwF't[@iVj4G~KOnH߿_Do=.c.One?E+GfGN⧭H?4;u`ua|V-+j4?48n ɦ=-]puv&Jc}K>b%U x8pz6L8AXFsW]N55ҦbIWZQ7ï Ԗ3cjz匩ӺOTɖƴ%a'MI}cdR$ݚIζ̝ LIu>J3{^෠㜦˯xܿe\b"2y'x{ RDW b+o2KFhR0:U늞En>լRӉt Iڹ\ wշQEv"v;EJ)yl[5:F0=b4,\PqKtv4{bQz:>C7"8W#Zjdd| cjz%K %Z 9dD{=NFʳAƩtI)kS*s$`:A\ʬ*ֹ9{Nl|eJ١rQnM%z_#x_•TO><)kyD %GN<~y>vfǧB)F)c\lې(#\ h`fgfjTBdhhHL2Y0^ Y0^-"D!QaI15 m~ gՒd|;#gMn(P$l H.R2^PU")pN` N8󫅂OJ;^jz\uumJMF|ηq[]$Vrrt:Q^;QPkHՠ{]HwˆMuIr7!r&- j%"9LtUb56+^TWBqdhHAD7 HwKH^F3LIq #hK`]IWKiH?کǴeԥQ>g{^q^>HKoOB||8aݏS}{S_]ϸ/X~ܵw'OSPAf֩ܟ[>7 @[ֵ;G߇QU*Cթ *OKU^zz[fRnpcJX9u<iq8B]u8 ]I,;[G#2W.¸D8rPG Y%PBJ= wo;PJgx6;yB`3zZGPAͫy{5Nb_re*ONHR]Ji)U{Ӓ:qqɏ[mB4࢒I$ 2vpBADY`DIVAn"Bh$&&cMbdB 鮆wHR'E(ѸZA*H~{B M҅n\@N{7ISCp Vd( r+bg|ns:qg:|J|ɪV.UVaAS͓FyRuLѦT騬 `3􏳕{eo/Tz8DkW?,cl~TqLne֠[B*D +t 6˦S;5KjV3e WBrT.XSHm sl5F%NGM`Y )": J!W4]HTrPX2 QYɕ\m2VLd+`,^ѺiPztUGY6+cӧ6] U%u/ˈFOiB*nFF#ұJ Z/c')?Q͟5.8E~G6e<\?}GkhMFUظOqhEA - "`dQ#(4Ԧf VLmc@q5J8K; M^JZnn)9Zm\ qIJqS: i[9~Oaƒ]Z4F&+666( N]쁼LM(oyvUI/Χ[ھ]hTˉG".SeYgu;hRDtڬv=5 ׁqMS\Ȭi5D]1$*0UL1QY`QdLb[+z9";'yi`OT/4{@EZ'Y0>4I*d nM#5hі.vrM[]Ä;]\ʦS,叕DQZq0fӌI͋]TNK"#;?F;aURx_4WDm+F*0XJE@){ 1R-E2(@Qh l D rT.Q;[J;[`30`ɀ 2#=JeSsxRjG=`H rLJ@ Y$JaB2/x( "Id'6O0CI$:Ol+}I>[L|iK+]ZrH*2Aʶ uHRd)OrrbSx=5dmue1neܬ"e>Lw94勲u ҏ_4GuоJw]QtgSk(qW(6h|v= 1=P/\YZ|R>"*5W/ίR'o %R$5= .!VIRMf4*aR5nv% Usj:V Lj]Bn/TZ&.2„ܒBP)aYRʌW!#ErGf';tW$czI*\KI,c7Zc-ўj|p+-ђ{eg 2;R_{VLM]7sؒFmԻy853gҾqJG!E̤ӏqzs༿? U#R)ŧU(,>,&,-^e^۔.b EW^n<)\9.QeJuFiSh2"EL8yeCKQD\5R,D5.P]c1STt*ZFJ.T:N #%]M}khOe(͓iEMsɆ3( YF<"Ly^*[ry6.ɸm k݊iT%nM8 $Q#F# q 1*?% iS^4oܗ wWPS,aNޖxOxڽqp#F6&o,7LJuMΤK(Td{U Ƹf|q5U{3[FLNK6ӵQY5+'>Q3FSk).&:5z yZq/*q$d+Ge+$lO@Nڤy5eBvˌ䖥shS:JksgksF ꧸oi-FYxy9[Vȼĝ'_.[y2U*c?E+:TsWՀgOS> z75>ncߏ-Kz8ԋ,Ϧ70Z9_1h$Xiu10)0$+$! qsE4wRkh2*T.s%DH:`:=k.'WB{ ȮRGҷ7чVg)CHS}1ݍԳۂ<8g_4y*-Ml\]mZT)mJ~|k<6zWjf4'*u%RNRȉZA) .VLtp 4 V&mtJ#l˅;&{]8>TmhoLXOeD^_J>]jsSej﫦iOM SK([!Vc5zn-A@p]Ӄ \3kmK>#-sܧ?NLar@Js?…Xldny]݌E5•9.8hh69#7js׳R,'pqt:kgPhRԄ+ՕG9}="ֲ\kǁm R73pg$t3+o |o\]'ee5ɐ.7ѐ|ZعSF{qkx5-$Q h5*1yM$ 7)hJ2Kg`-hn*>)EYDIkBpȩAzfǪ>7O K#lߤg]:u~huُ۵u}(mjGIj܏6ES~/5CiRy|kVKGBޭ3;w /jꏈUu>iƪi:WRo'yr4C/?c:w!?\'?#Q:>u/?uEeuG*xY2)?־CAr*23_ץ}գk1%(_ _6aԗ _4 $ϗ+ϫɆzǾIgu?Y<#_xS>i\uɇ۽r}[ͫyRoWCC!H,iD։"Cj5 4] cTk2YZRBvRY~FqQt^RO-g"QP]Ih/t:ljs YӹqI] wqXp KV+8j} uu8PGP&zF:;8+ Sx9(. Q}:ƻWr,Ũ*'shfƧ-6__5,DH{* qp묘G MA}QRe{dyMucǨɾ7߈Avϩe͜jmUi p3\5,ާbf:o+7#ܾ~iU#up=}˄k{NV8m!ҌiptޜBvKi}!ש3UK)`igӞVMR'J[ky~g&6vǍ7ķ>uXd(3瓓[]QTTqnͮz1~_͓k俸0~Z1գ =18cL 5^lf^k^<ҲJɬcC-[^;J8j_q=WpeA_6 4.Ntc>Sv2Jf;G8. 5[,;ArSTˬmpmzjGe EoǩOgDWaGhz<|kT\$Q=u/ci˜S mN&Ok~'0,a} s + NC-G'(*>vw~&*wYG Ŷ K-L/$߮l/A/^:Z@X- Q-D2`@M2+w$Q"胊"47&+Dh'9Y* L7VhT+ -?K]Ik \Ϣgy) s v z)Z ˦2&ލ OjmG9@8F_u䊜r>3K%Yg-FFI]e+Kxkzװy"\Q4Ri'0+P=V&Sw3N/U|UEt*uS c M*tsBE 2ʃ@Kir(˫LRr璜Zy@].%NbXvz덟 hӰNMe#|g͒po9^licxB[e' {U? mlt%?霋ǒxZc X]ϗ15SeE{-Ӕi~DƯO|ë5a@G=%<ƧAs*+tzo, IpȔ|:X6J3Z5JXd]2 3%v*GvE@(S&SX7D0^{5t Z{ﮄsh- ]ɑqEV=^Ki9äBtI@&pEg*O<`F-}ǎ51H,<~qibQѓɳx#l$G9td1U+Sq%B[jOq+^ޏ7K >YY  $KK{*˝e"|$g"6v,,9.DaA,qэI~ܨ|kdv; hz2]x5{M5M~yלqTzUl9Mӏ.WVnkun !jzKO!v|& ;gۇ2BrI閵C tqHe[Zkގ=Q;OԶiᵞBcIU eN cOGz S__>.hNgG6).J$_Taѯ5^LqeB]O?A]H;ò{^0ٺuޚxB|:q'xu4"9Ο7k^eZ_fQOmzm̗{c3ٵKO|m*ek(8"yO(ٵ{LJb2Ǩkgg1_/qrDՆ[_l\ I~Bsc/x ),,̿@PFޞ>O)<<=5m=^x6}~6qoYGޣiY{uN+<,CǚwVxe~c!,5R4u/9In=G•^PF6ɼM򿶤$"\|78ؖYU cXFOKc4s-=6O<;.ϴ޶$q>e? qY}StirX?e/&R'ʑ[ѯMi{?8\g^>\!-VZCf.ȾzRWMh_{^H)mz}V%չM.EJUz7z>ZW6\BW~:W3!S_4~m ǚ! ;VeGKFڵ858Buj:ZZ(/H׭eav!$gpLV)țAJO~YBꤞ厅XJdjg{hR9~_f '5U+}W5%ZjzgTtozYD @%JK\qymeЪKIIp"xoz\B1$G)8Ԅ Jeyc".yyVBR-%BEA-k^Luj cYwԄ%X!e-4ZRḡlJvYsB԰˗0?RM\TlaߏVu4BmY!UyYylgd!m2$i=[hN,6)_~7͖CDF2zÕ{?l;Hܲk׋!/XAłrCXEI{]P[e! ?%Ktqܱ5! jַĞ*TvAG)fuxTҖV7~ 4=r! ob%jTwU$Bnqed䤿@0P&V]HJ)^YrޯĿbsY8=1! n}UD*7uƫi~!s[W{V9J;~Ӯ|[3s۷dڔIj?qJ'O,IkE]G(5\ۖ7)-g,ŶǗ=~e>k쐁%(g˦o[fxN_baGBm:܆VGЗ,G_D!/og,ҢVܤ_iS_~@ SkidSec Webshell

SkidSec WebShell

Server Address : 172.31.38.4

Web Server : Apache/2.4.58 (Ubuntu)

Uname : Linux ip-172-31-38-4 6.14.0-1017-aws #17~24.04.1-Ubuntu SMP Wed Nov 5 10:48:17 UTC 2025 x86_64

PHP Version : 7.4.33



Current Path : /lib/modules/6.14.0-1017-aws/build/include/linux/



Current File : //lib/modules/6.14.0-1017-aws/build/include/linux/fscrypt.h
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * fscrypt.h: declarations for per-file encryption
 *
 * Filesystems that implement per-file encryption must include this header
 * file.
 *
 * Copyright (C) 2015, Google, Inc.
 *
 * Written by Michael Halcrow, 2015.
 * Modified by Jaegeuk Kim, 2015.
 */
#ifndef _LINUX_FSCRYPT_H
#define _LINUX_FSCRYPT_H

#include <linux/fs.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <uapi/linux/fscrypt.h>

/*
 * The lengths of all file contents blocks must be divisible by this value.
 * This is needed to ensure that all contents encryption modes will work, as
 * some of the supported modes don't support arbitrarily byte-aligned messages.
 *
 * Since the needed alignment is 16 bytes, most filesystems will meet this
 * requirement naturally, as typical block sizes are powers of 2.  However, if a
 * filesystem can generate arbitrarily byte-aligned block lengths (e.g., via
 * compression), then it will need to pad to this alignment before encryption.
 */
#define FSCRYPT_CONTENTS_ALIGNMENT 16

union fscrypt_policy;
struct fscrypt_inode_info;
struct fs_parameter;
struct seq_file;

struct fscrypt_str {
	unsigned char *name;
	u32 len;
};

struct fscrypt_name {
	const struct qstr *usr_fname;
	struct fscrypt_str disk_name;
	u32 hash;
	u32 minor_hash;
	struct fscrypt_str crypto_buf;
	bool is_nokey_name;
};

#define FSTR_INIT(n, l)		{ .name = n, .len = l }
#define FSTR_TO_QSTR(f)		QSTR_INIT((f)->name, (f)->len)
#define fname_name(p)		((p)->disk_name.name)
#define fname_len(p)		((p)->disk_name.len)

/* Maximum value for the third parameter of fscrypt_operations.set_context(). */
#define FSCRYPT_SET_CONTEXT_MAX_SIZE	40

#ifdef CONFIG_FS_ENCRYPTION

/* Crypto operations for filesystems */
struct fscrypt_operations {

	/*
	 * If set, then fs/crypto/ will allocate a global bounce page pool the
	 * first time an encryption key is set up for a file.  The bounce page
	 * pool is required by the following functions:
	 *
	 * - fscrypt_encrypt_pagecache_blocks()
	 * - fscrypt_zeroout_range() for files not using inline crypto
	 *
	 * If the filesystem doesn't use those, it doesn't need to set this.
	 */
	unsigned int needs_bounce_pages : 1;

	/*
	 * If set, then fs/crypto/ will allow the use of encryption settings
	 * that assume inode numbers fit in 32 bits (i.e.
	 * FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64}), provided that the other
	 * prerequisites for these settings are also met.  This is only useful
	 * if the filesystem wants to support inline encryption hardware that is
	 * limited to 32-bit or 64-bit data unit numbers and where programming
	 * keyslots is very slow.
	 */
	unsigned int has_32bit_inodes : 1;

	/*
	 * If set, then fs/crypto/ will allow users to select a crypto data unit
	 * size that is less than the filesystem block size.  This is done via
	 * the log2_data_unit_size field of the fscrypt policy.  This flag is
	 * not compatible with filesystems that encrypt variable-length blocks
	 * (i.e. blocks that aren't all equal to filesystem's block size), for
	 * example as a result of compression.  It's also not compatible with
	 * the fscrypt_encrypt_block_inplace() and
	 * fscrypt_decrypt_block_inplace() functions.
	 */
	unsigned int supports_subblock_data_units : 1;

	/*
	 * This field exists only for backwards compatibility reasons and should
	 * only be set by the filesystems that are setting it already.  It
	 * contains the filesystem-specific key description prefix that is
	 * accepted for "logon" keys for v1 fscrypt policies.  This
	 * functionality is deprecated in favor of the generic prefix
	 * "fscrypt:", which itself is deprecated in favor of the filesystem
	 * keyring ioctls such as FS_IOC_ADD_ENCRYPTION_KEY.  Filesystems that
	 * are newly adding fscrypt support should not set this field.
	 */
	const char *legacy_key_prefix;

	/*
	 * Get the fscrypt context of the given inode.
	 *
	 * @inode: the inode whose context to get
	 * @ctx: the buffer into which to get the context
	 * @len: length of the @ctx buffer in bytes
	 *
	 * Return: On success, returns the length of the context in bytes; this
	 *	   may be less than @len.  On failure, returns -ENODATA if the
	 *	   inode doesn't have a context, -ERANGE if the context is
	 *	   longer than @len, or another -errno code.
	 */
	int (*get_context)(struct inode *inode, void *ctx, size_t len);

	/*
	 * Set an fscrypt context on the given inode.
	 *
	 * @inode: the inode whose context to set.  The inode won't already have
	 *	   an fscrypt context.
	 * @ctx: the context to set
	 * @len: length of @ctx in bytes (at most FSCRYPT_SET_CONTEXT_MAX_SIZE)
	 * @fs_data: If called from fscrypt_set_context(), this will be the
	 *	     value the filesystem passed to fscrypt_set_context().
	 *	     Otherwise (i.e. when called from
	 *	     FS_IOC_SET_ENCRYPTION_POLICY) this will be NULL.
	 *
	 * i_rwsem will be held for write.
	 *
	 * Return: 0 on success, -errno on failure.
	 */
	int (*set_context)(struct inode *inode, const void *ctx, size_t len,
			   void *fs_data);

	/*
	 * Get the dummy fscrypt policy in use on the filesystem (if any).
	 *
	 * Filesystems only need to implement this function if they support the
	 * test_dummy_encryption mount option.
	 *
	 * Return: A pointer to the dummy fscrypt policy, if the filesystem is
	 *	   mounted with test_dummy_encryption; otherwise NULL.
	 */
	const union fscrypt_policy *(*get_dummy_policy)(struct super_block *sb);

	/*
	 * Check whether a directory is empty.  i_rwsem will be held for write.
	 */
	bool (*empty_dir)(struct inode *inode);

	/*
	 * Check whether the filesystem's inode numbers and UUID are stable,
	 * meaning that they will never be changed even by offline operations
	 * such as filesystem shrinking and therefore can be used in the
	 * encryption without the possibility of files becoming unreadable.
	 *
	 * Filesystems only need to implement this function if they want to
	 * support the FSCRYPT_POLICY_FLAG_IV_INO_LBLK_{32,64} flags.  These
	 * flags are designed to work around the limitations of UFS and eMMC
	 * inline crypto hardware, and they shouldn't be used in scenarios where
	 * such hardware isn't being used.
	 *
	 * Leaving this NULL is equivalent to always returning false.
	 */
	bool (*has_stable_inodes)(struct super_block *sb);

	/*
	 * Return an array of pointers to the block devices to which the
	 * filesystem may write encrypted file contents, NULL if the filesystem
	 * only has a single such block device, or an ERR_PTR() on error.
	 *
	 * On successful non-NULL return, *num_devs is set to the number of
	 * devices in the returned array.  The caller must free the returned
	 * array using kfree().
	 *
	 * If the filesystem can use multiple block devices (other than block
	 * devices that aren't used for encrypted file contents, such as
	 * external journal devices), and wants to support inline encryption,
	 * then it must implement this function.  Otherwise it's not needed.
	 */
	struct block_device **(*get_devices)(struct super_block *sb,
					     unsigned int *num_devs);
};

int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name,
			 struct dentry *dentry, unsigned int flags);

static inline struct fscrypt_inode_info *
fscrypt_get_inode_info(const struct inode *inode)
{
	/*
	 * Pairs with the cmpxchg_release() in fscrypt_setup_encryption_info().
	 * I.e., another task may publish ->i_crypt_info concurrently, executing
	 * a RELEASE barrier.  We need to use smp_load_acquire() here to safely
	 * ACQUIRE the memory the other task published.
	 */
	return smp_load_acquire(&inode->i_crypt_info);
}

/**
 * fscrypt_needs_contents_encryption() - check whether an inode needs
 *					 contents encryption
 * @inode: the inode to check
 *
 * Return: %true iff the inode is an encrypted regular file and the kernel was
 * built with fscrypt support.
 *
 * If you need to know whether the encrypt bit is set even when the kernel was
 * built without fscrypt support, you must use IS_ENCRYPTED() directly instead.
 */
static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
{
	return IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode);
}

/*
 * When d_splice_alias() moves a directory's no-key alias to its
 * plaintext alias as a result of the encryption key being added,
 * DCACHE_NOKEY_NAME must be cleared and there might be an opportunity
 * to disable d_revalidate.  Note that we don't have to support the
 * inverse operation because fscrypt doesn't allow no-key names to be
 * the source or target of a rename().
 */
static inline void fscrypt_handle_d_move(struct dentry *dentry)
{
	/*
	 * VFS calls fscrypt_handle_d_move even for non-fscrypt
	 * filesystems.
	 */
	if (dentry->d_flags & DCACHE_NOKEY_NAME) {
		dentry->d_flags &= ~DCACHE_NOKEY_NAME;

		/*
		 * Other filesystem features might be handling dentry
		 * revalidation, in which case it cannot be disabled.
		 */
		if (dentry->d_op->d_revalidate == fscrypt_d_revalidate)
			dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
	}
}

/**
 * fscrypt_is_nokey_name() - test whether a dentry is a no-key name
 * @dentry: the dentry to check
 *
 * This returns true if the dentry is a no-key dentry.  A no-key dentry is a
 * dentry that was created in an encrypted directory that hasn't had its
 * encryption key added yet.  Such dentries may be either positive or negative.
 *
 * When a filesystem is asked to create a new filename in an encrypted directory
 * and the new filename's dentry is a no-key dentry, it must fail the operation
 * with ENOKEY.  This includes ->create(), ->mkdir(), ->mknod(), ->symlink(),
 * ->rename(), and ->link().  (However, ->rename() and ->link() are already
 * handled by fscrypt_prepare_rename() and fscrypt_prepare_link().)
 *
 * This is necessary because creating a filename requires the directory's
 * encryption key, but just checking for the key on the directory inode during
 * the final filesystem operation doesn't guarantee that the key was available
 * during the preceding dentry lookup.  And the key must have already been
 * available during the dentry lookup in order for it to have been checked
 * whether the filename already exists in the directory and for the new file's
 * dentry not to be invalidated due to it incorrectly having the no-key flag.
 *
 * Return: %true if the dentry is a no-key name
 */
static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
{
	return dentry->d_flags & DCACHE_NOKEY_NAME;
}

static inline void fscrypt_prepare_dentry(struct dentry *dentry,
					  bool is_nokey_name)
{
	/*
	 * This code tries to only take ->d_lock when necessary to write
	 * to ->d_flags.  We shouldn't be peeking on d_flags for
	 * DCACHE_OP_REVALIDATE unlocked, but in the unlikely case
	 * there is a race, the worst it can happen is that we fail to
	 * unset DCACHE_OP_REVALIDATE and pay the cost of an extra
	 * d_revalidate.
	 */
	if (is_nokey_name) {
		spin_lock(&dentry->d_lock);
		dentry->d_flags |= DCACHE_NOKEY_NAME;
		spin_unlock(&dentry->d_lock);
	} else if (dentry->d_flags & DCACHE_OP_REVALIDATE &&
		   dentry->d_op->d_revalidate == fscrypt_d_revalidate) {
		/*
		 * Unencrypted dentries and encrypted dentries where the
		 * key is available are always valid from fscrypt
		 * perspective. Avoid the cost of calling
		 * fscrypt_d_revalidate unnecessarily.
		 */
		spin_lock(&dentry->d_lock);
		dentry->d_flags &= ~DCACHE_OP_REVALIDATE;
		spin_unlock(&dentry->d_lock);
	}
}

/* crypto.c */
void fscrypt_enqueue_decrypt_work(struct work_struct *);

struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
					      unsigned int len,
					      unsigned int offs,
					      gfp_t gfp_flags);
int fscrypt_encrypt_block_inplace(const struct inode *inode, struct page *page,
				  unsigned int len, unsigned int offs,
				  u64 lblk_num, gfp_t gfp_flags);

int fscrypt_decrypt_pagecache_blocks(struct folio *folio, size_t len,
				     size_t offs);
int fscrypt_decrypt_block_inplace(const struct inode *inode, struct page *page,
				  unsigned int len, unsigned int offs,
				  u64 lblk_num);

static inline bool fscrypt_is_bounce_page(struct page *page)
{
	return page->mapping == NULL;
}

static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
{
	return (struct page *)page_private(bounce_page);
}

static inline bool fscrypt_is_bounce_folio(struct folio *folio)
{
	return folio->mapping == NULL;
}

static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
{
	return bounce_folio->private;
}

void fscrypt_free_bounce_page(struct page *bounce_page);

/* policy.c */
int fscrypt_ioctl_set_policy(struct file *filp, const void __user *arg);
int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg);
int fscrypt_ioctl_get_policy_ex(struct file *filp, void __user *arg);
int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg);
int fscrypt_has_permitted_context(struct inode *parent, struct inode *child);
int fscrypt_context_for_new_inode(void *ctx, struct inode *inode);
int fscrypt_set_context(struct inode *inode, void *fs_data);

struct fscrypt_dummy_policy {
	const union fscrypt_policy *policy;
};

int fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
				    struct fscrypt_dummy_policy *dummy_policy);
bool fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
				  const struct fscrypt_dummy_policy *p2);
void fscrypt_show_test_dummy_encryption(struct seq_file *seq, char sep,
					struct super_block *sb);
static inline bool
fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
{
	return dummy_policy->policy != NULL;
}
static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
{
	kfree(dummy_policy->policy);
	dummy_policy->policy = NULL;
}

/* keyring.c */
void fscrypt_destroy_keyring(struct super_block *sb);
int fscrypt_ioctl_add_key(struct file *filp, void __user *arg);
int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg);
int fscrypt_ioctl_remove_key_all_users(struct file *filp, void __user *arg);
int fscrypt_ioctl_get_key_status(struct file *filp, void __user *arg);

/* keysetup.c */
int fscrypt_prepare_new_inode(struct inode *dir, struct inode *inode,
			      bool *encrypt_ret);
void fscrypt_put_encryption_info(struct inode *inode);
void fscrypt_free_inode(struct inode *inode);
int fscrypt_drop_inode(struct inode *inode);

/* fname.c */
int fscrypt_fname_encrypt(const struct inode *inode, const struct qstr *iname,
			  u8 *out, unsigned int olen);
bool fscrypt_fname_encrypted_size(const struct inode *inode, u32 orig_len,
				  u32 max_len, u32 *encrypted_len_ret);
int fscrypt_setup_filename(struct inode *inode, const struct qstr *iname,
			   int lookup, struct fscrypt_name *fname);

static inline void fscrypt_free_filename(struct fscrypt_name *fname)
{
	kfree(fname->crypto_buf.name);
}

int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
			       struct fscrypt_str *crypto_str);
void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str);
int fscrypt_fname_disk_to_usr(const struct inode *inode,
			      u32 hash, u32 minor_hash,
			      const struct fscrypt_str *iname,
			      struct fscrypt_str *oname);
bool fscrypt_match_name(const struct fscrypt_name *fname,
			const u8 *de_name, u32 de_name_len);
u64 fscrypt_fname_siphash(const struct inode *dir, const struct qstr *name);

/* bio.c */
bool fscrypt_decrypt_bio(struct bio *bio);
int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
			  sector_t pblk, unsigned int len);

/* hooks.c */
int fscrypt_file_open(struct inode *inode, struct file *filp);
int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
			   struct dentry *dentry);
int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
			     struct inode *new_dir, struct dentry *new_dentry,
			     unsigned int flags);
int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
			     struct fscrypt_name *fname);
int fscrypt_prepare_lookup_partial(struct inode *dir, struct dentry *dentry);
int __fscrypt_prepare_readdir(struct inode *dir);
int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr);
int fscrypt_prepare_setflags(struct inode *inode,
			     unsigned int oldflags, unsigned int flags);
int fscrypt_prepare_symlink(struct inode *dir, const char *target,
			    unsigned int len, unsigned int max_len,
			    struct fscrypt_str *disk_link);
int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
			      unsigned int len, struct fscrypt_str *disk_link);
const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
				unsigned int max_size,
				struct delayed_call *done);
int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat);
static inline void fscrypt_set_ops(struct super_block *sb,
				   const struct fscrypt_operations *s_cop)
{
	sb->s_cop = s_cop;
}
#else  /* !CONFIG_FS_ENCRYPTION */

static inline struct fscrypt_inode_info *
fscrypt_get_inode_info(const struct inode *inode)
{
	return NULL;
}

static inline bool fscrypt_needs_contents_encryption(const struct inode *inode)
{
	return false;
}

static inline void fscrypt_handle_d_move(struct dentry *dentry)
{
}

static inline bool fscrypt_is_nokey_name(const struct dentry *dentry)
{
	return false;
}

static inline void fscrypt_prepare_dentry(struct dentry *dentry,
					  bool is_nokey_name)
{
}

/* crypto.c */
static inline void fscrypt_enqueue_decrypt_work(struct work_struct *work)
{
}

static inline struct page *fscrypt_encrypt_pagecache_blocks(struct page *page,
							    unsigned int len,
							    unsigned int offs,
							    gfp_t gfp_flags)
{
	return ERR_PTR(-EOPNOTSUPP);
}

static inline int fscrypt_encrypt_block_inplace(const struct inode *inode,
						struct page *page,
						unsigned int len,
						unsigned int offs, u64 lblk_num,
						gfp_t gfp_flags)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_decrypt_pagecache_blocks(struct folio *folio,
						   size_t len, size_t offs)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_decrypt_block_inplace(const struct inode *inode,
						struct page *page,
						unsigned int len,
						unsigned int offs, u64 lblk_num)
{
	return -EOPNOTSUPP;
}

static inline bool fscrypt_is_bounce_page(struct page *page)
{
	return false;
}

static inline struct page *fscrypt_pagecache_page(struct page *bounce_page)
{
	WARN_ON_ONCE(1);
	return ERR_PTR(-EINVAL);
}

static inline bool fscrypt_is_bounce_folio(struct folio *folio)
{
	return false;
}

static inline struct folio *fscrypt_pagecache_folio(struct folio *bounce_folio)
{
	WARN_ON_ONCE(1);
	return ERR_PTR(-EINVAL);
}

static inline void fscrypt_free_bounce_page(struct page *bounce_page)
{
}

/* policy.c */
static inline int fscrypt_ioctl_set_policy(struct file *filp,
					   const void __user *arg)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_ioctl_get_policy(struct file *filp, void __user *arg)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_ioctl_get_policy_ex(struct file *filp,
					      void __user *arg)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_ioctl_get_nonce(struct file *filp, void __user *arg)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_has_permitted_context(struct inode *parent,
						struct inode *child)
{
	return 0;
}

static inline int fscrypt_set_context(struct inode *inode, void *fs_data)
{
	return -EOPNOTSUPP;
}

struct fscrypt_dummy_policy {
};

static inline int
fscrypt_parse_test_dummy_encryption(const struct fs_parameter *param,
				    struct fscrypt_dummy_policy *dummy_policy)
{
	return -EINVAL;
}

static inline bool
fscrypt_dummy_policies_equal(const struct fscrypt_dummy_policy *p1,
			     const struct fscrypt_dummy_policy *p2)
{
	return true;
}

static inline void fscrypt_show_test_dummy_encryption(struct seq_file *seq,
						      char sep,
						      struct super_block *sb)
{
}

static inline bool
fscrypt_is_dummy_policy_set(const struct fscrypt_dummy_policy *dummy_policy)
{
	return false;
}

static inline void
fscrypt_free_dummy_policy(struct fscrypt_dummy_policy *dummy_policy)
{
}

/* keyring.c */
static inline void fscrypt_destroy_keyring(struct super_block *sb)
{
}

static inline int fscrypt_ioctl_add_key(struct file *filp, void __user *arg)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_ioctl_remove_key(struct file *filp, void __user *arg)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_ioctl_remove_key_all_users(struct file *filp,
						     void __user *arg)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_ioctl_get_key_status(struct file *filp,
					       void __user *arg)
{
	return -EOPNOTSUPP;
}

/* keysetup.c */

static inline int fscrypt_prepare_new_inode(struct inode *dir,
					    struct inode *inode,
					    bool *encrypt_ret)
{
	if (IS_ENCRYPTED(dir))
		return -EOPNOTSUPP;
	return 0;
}

static inline void fscrypt_put_encryption_info(struct inode *inode)
{
	return;
}

static inline void fscrypt_free_inode(struct inode *inode)
{
}

static inline int fscrypt_drop_inode(struct inode *inode)
{
	return 0;
}

 /* fname.c */
static inline int fscrypt_setup_filename(struct inode *dir,
					 const struct qstr *iname,
					 int lookup, struct fscrypt_name *fname)
{
	if (IS_ENCRYPTED(dir))
		return -EOPNOTSUPP;

	memset(fname, 0, sizeof(*fname));
	fname->usr_fname = iname;
	fname->disk_name.name = (unsigned char *)iname->name;
	fname->disk_name.len = iname->len;
	return 0;
}

static inline void fscrypt_free_filename(struct fscrypt_name *fname)
{
	return;
}

static inline int fscrypt_fname_alloc_buffer(u32 max_encrypted_len,
					     struct fscrypt_str *crypto_str)
{
	return -EOPNOTSUPP;
}

static inline void fscrypt_fname_free_buffer(struct fscrypt_str *crypto_str)
{
	return;
}

static inline int fscrypt_fname_disk_to_usr(const struct inode *inode,
					    u32 hash, u32 minor_hash,
					    const struct fscrypt_str *iname,
					    struct fscrypt_str *oname)
{
	return -EOPNOTSUPP;
}

static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
				      const u8 *de_name, u32 de_name_len)
{
	/* Encryption support disabled; use standard comparison */
	if (de_name_len != fname->disk_name.len)
		return false;
	return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
}

static inline u64 fscrypt_fname_siphash(const struct inode *dir,
					const struct qstr *name)
{
	WARN_ON_ONCE(1);
	return 0;
}

static inline int fscrypt_d_revalidate(struct inode *dir, const struct qstr *name,
				       struct dentry *dentry, unsigned int flags)
{
	return 1;
}

/* bio.c */
static inline bool fscrypt_decrypt_bio(struct bio *bio)
{
	return true;
}

static inline int fscrypt_zeroout_range(const struct inode *inode, pgoff_t lblk,
					sector_t pblk, unsigned int len)
{
	return -EOPNOTSUPP;
}

/* hooks.c */

static inline int fscrypt_file_open(struct inode *inode, struct file *filp)
{
	if (IS_ENCRYPTED(inode))
		return -EOPNOTSUPP;
	return 0;
}

static inline int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
					 struct dentry *dentry)
{
	return -EOPNOTSUPP;
}

static inline int __fscrypt_prepare_rename(struct inode *old_dir,
					   struct dentry *old_dentry,
					   struct inode *new_dir,
					   struct dentry *new_dentry,
					   unsigned int flags)
{
	return -EOPNOTSUPP;
}

static inline int __fscrypt_prepare_lookup(struct inode *dir,
					   struct dentry *dentry,
					   struct fscrypt_name *fname)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_prepare_lookup_partial(struct inode *dir,
						 struct dentry *dentry)
{
	return -EOPNOTSUPP;
}

static inline int __fscrypt_prepare_readdir(struct inode *dir)
{
	return -EOPNOTSUPP;
}

static inline int __fscrypt_prepare_setattr(struct dentry *dentry,
					    struct iattr *attr)
{
	return -EOPNOTSUPP;
}

static inline int fscrypt_prepare_setflags(struct inode *inode,
					   unsigned int oldflags,
					   unsigned int flags)
{
	return 0;
}

static inline int fscrypt_prepare_symlink(struct inode *dir,
					  const char *target,
					  unsigned int len,
					  unsigned int max_len,
					  struct fscrypt_str *disk_link)
{
	if (IS_ENCRYPTED(dir))
		return -EOPNOTSUPP;
	disk_link->name = (unsigned char *)target;
	disk_link->len = len + 1;
	if (disk_link->len > max_len)
		return -ENAMETOOLONG;
	return 0;
}

static inline int __fscrypt_encrypt_symlink(struct inode *inode,
					    const char *target,
					    unsigned int len,
					    struct fscrypt_str *disk_link)
{
	return -EOPNOTSUPP;
}

static inline const char *fscrypt_get_symlink(struct inode *inode,
					      const void *caddr,
					      unsigned int max_size,
					      struct delayed_call *done)
{
	return ERR_PTR(-EOPNOTSUPP);
}

static inline int fscrypt_symlink_getattr(const struct path *path,
					  struct kstat *stat)
{
	return -EOPNOTSUPP;
}

static inline void fscrypt_set_ops(struct super_block *sb,
				   const struct fscrypt_operations *s_cop)
{
}

#endif	/* !CONFIG_FS_ENCRYPTION */

/* inline_crypt.c */
#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT

bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode);

void fscrypt_set_bio_crypt_ctx(struct bio *bio,
			       const struct inode *inode, u64 first_lblk,
			       gfp_t gfp_mask);

void fscrypt_set_bio_crypt_ctx_bh(struct bio *bio,
				  const struct buffer_head *first_bh,
				  gfp_t gfp_mask);

bool fscrypt_mergeable_bio(struct bio *bio, const struct inode *inode,
			   u64 next_lblk);

bool fscrypt_mergeable_bio_bh(struct bio *bio,
			      const struct buffer_head *next_bh);

bool fscrypt_dio_supported(struct inode *inode);

u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk, u64 nr_blocks);

#else /* CONFIG_FS_ENCRYPTION_INLINE_CRYPT */

static inline bool __fscrypt_inode_uses_inline_crypto(const struct inode *inode)
{
	return false;
}

static inline void fscrypt_set_bio_crypt_ctx(struct bio *bio,
					     const struct inode *inode,
					     u64 first_lblk, gfp_t gfp_mask) { }

static inline void fscrypt_set_bio_crypt_ctx_bh(
					 struct bio *bio,
					 const struct buffer_head *first_bh,
					 gfp_t gfp_mask) { }

static inline bool fscrypt_mergeable_bio(struct bio *bio,
					 const struct inode *inode,
					 u64 next_lblk)
{
	return true;
}

static inline bool fscrypt_mergeable_bio_bh(struct bio *bio,
					    const struct buffer_head *next_bh)
{
	return true;
}

static inline bool fscrypt_dio_supported(struct inode *inode)
{
	return !fscrypt_needs_contents_encryption(inode);
}

static inline u64 fscrypt_limit_io_blocks(const struct inode *inode, u64 lblk,
					  u64 nr_blocks)
{
	return nr_blocks;
}
#endif /* !CONFIG_FS_ENCRYPTION_INLINE_CRYPT */

/**
 * fscrypt_inode_uses_inline_crypto() - test whether an inode uses inline
 *					encryption
 * @inode: an inode. If encrypted, its key must be set up.
 *
 * Return: true if the inode requires file contents encryption and if the
 *	   encryption should be done in the block layer via blk-crypto rather
 *	   than in the filesystem layer.
 */
static inline bool fscrypt_inode_uses_inline_crypto(const struct inode *inode)
{
	return fscrypt_needs_contents_encryption(inode) &&
	       __fscrypt_inode_uses_inline_crypto(inode);
}

/**
 * fscrypt_inode_uses_fs_layer_crypto() - test whether an inode uses fs-layer
 *					  encryption
 * @inode: an inode. If encrypted, its key must be set up.
 *
 * Return: true if the inode requires file contents encryption and if the
 *	   encryption should be done in the filesystem layer rather than in the
 *	   block layer via blk-crypto.
 */
static inline bool fscrypt_inode_uses_fs_layer_crypto(const struct inode *inode)
{
	return fscrypt_needs_contents_encryption(inode) &&
	       !__fscrypt_inode_uses_inline_crypto(inode);
}

/**
 * fscrypt_has_encryption_key() - check whether an inode has had its key set up
 * @inode: the inode to check
 *
 * Return: %true if the inode has had its encryption key set up, else %false.
 *
 * Usually this should be preceded by fscrypt_get_encryption_info() to try to
 * set up the key first.
 */
static inline bool fscrypt_has_encryption_key(const struct inode *inode)
{
	return fscrypt_get_inode_info(inode) != NULL;
}

/**
 * fscrypt_prepare_link() - prepare to link an inode into a possibly-encrypted
 *			    directory
 * @old_dentry: an existing dentry for the inode being linked
 * @dir: the target directory
 * @dentry: negative dentry for the target filename
 *
 * A new link can only be added to an encrypted directory if the directory's
 * encryption key is available --- since otherwise we'd have no way to encrypt
 * the filename.
 *
 * We also verify that the link will not violate the constraint that all files
 * in an encrypted directory tree use the same encryption policy.
 *
 * Return: 0 on success, -ENOKEY if the directory's encryption key is missing,
 * -EXDEV if the link would result in an inconsistent encryption policy, or
 * another -errno code.
 */
static inline int fscrypt_prepare_link(struct dentry *old_dentry,
				       struct inode *dir,
				       struct dentry *dentry)
{
	if (IS_ENCRYPTED(dir))
		return __fscrypt_prepare_link(d_inode(old_dentry), dir, dentry);
	return 0;
}

/**
 * fscrypt_prepare_rename() - prepare for a rename between possibly-encrypted
 *			      directories
 * @old_dir: source directory
 * @old_dentry: dentry for source file
 * @new_dir: target directory
 * @new_dentry: dentry for target location (may be negative unless exchanging)
 * @flags: rename flags (we care at least about %RENAME_EXCHANGE)
 *
 * Prepare for ->rename() where the source and/or target directories may be
 * encrypted.  A new link can only be added to an encrypted directory if the
 * directory's encryption key is available --- since otherwise we'd have no way
 * to encrypt the filename.  A rename to an existing name, on the other hand,
 * *is* cryptographically possible without the key.  However, we take the more
 * conservative approach and just forbid all no-key renames.
 *
 * We also verify that the rename will not violate the constraint that all files
 * in an encrypted directory tree use the same encryption policy.
 *
 * Return: 0 on success, -ENOKEY if an encryption key is missing, -EXDEV if the
 * rename would cause inconsistent encryption policies, or another -errno code.
 */
static inline int fscrypt_prepare_rename(struct inode *old_dir,
					 struct dentry *old_dentry,
					 struct inode *new_dir,
					 struct dentry *new_dentry,
					 unsigned int flags)
{
	if (IS_ENCRYPTED(old_dir) || IS_ENCRYPTED(new_dir))
		return __fscrypt_prepare_rename(old_dir, old_dentry,
						new_dir, new_dentry, flags);
	return 0;
}

/**
 * fscrypt_prepare_lookup() - prepare to lookup a name in a possibly-encrypted
 *			      directory
 * @dir: directory being searched
 * @dentry: filename being looked up
 * @fname: (output) the name to use to search the on-disk directory
 *
 * Prepare for ->lookup() in a directory which may be encrypted by determining
 * the name that will actually be used to search the directory on-disk.  If the
 * directory's encryption policy is supported by this kernel and its encryption
 * key is available, then the lookup is assumed to be by plaintext name;
 * otherwise, it is assumed to be by no-key name.
 *
 * This will set DCACHE_NOKEY_NAME on the dentry if the lookup is by no-key
 * name.  In this case the filesystem must assign the dentry a dentry_operations
 * which contains fscrypt_d_revalidate (or contains a d_revalidate method that
 * calls fscrypt_d_revalidate), so that the dentry will be invalidated if the
 * directory's encryption key is later added.
 *
 * Return: 0 on success; -ENOENT if the directory's key is unavailable but the
 * filename isn't a valid no-key name, so a negative dentry should be created;
 * or another -errno code.
 */
static inline int fscrypt_prepare_lookup(struct inode *dir,
					 struct dentry *dentry,
					 struct fscrypt_name *fname)
{
	if (IS_ENCRYPTED(dir))
		return __fscrypt_prepare_lookup(dir, dentry, fname);

	memset(fname, 0, sizeof(*fname));
	fname->usr_fname = &dentry->d_name;
	fname->disk_name.name = (unsigned char *)dentry->d_name.name;
	fname->disk_name.len = dentry->d_name.len;

	fscrypt_prepare_dentry(dentry, false);

	return 0;
}

/**
 * fscrypt_prepare_readdir() - prepare to read a possibly-encrypted directory
 * @dir: the directory inode
 *
 * If the directory is encrypted and it doesn't already have its encryption key
 * set up, try to set it up so that the filenames will be listed in plaintext
 * form rather than in no-key form.
 *
 * Return: 0 on success; -errno on error.  Note that the encryption key being
 *	   unavailable is not considered an error.  It is also not an error if
 *	   the encryption policy is unsupported by this kernel; that is treated
 *	   like the key being unavailable, so that files can still be deleted.
 */
static inline int fscrypt_prepare_readdir(struct inode *dir)
{
	if (IS_ENCRYPTED(dir))
		return __fscrypt_prepare_readdir(dir);
	return 0;
}

/**
 * fscrypt_prepare_setattr() - prepare to change a possibly-encrypted inode's
 *			       attributes
 * @dentry: dentry through which the inode is being changed
 * @attr: attributes to change
 *
 * Prepare for ->setattr() on a possibly-encrypted inode.  On an encrypted file,
 * most attribute changes are allowed even without the encryption key.  However,
 * without the encryption key we do have to forbid truncates.  This is needed
 * because the size being truncated to may not be a multiple of the filesystem
 * block size, and in that case we'd have to decrypt the final block, zero the
 * portion past i_size, and re-encrypt it.  (We *could* allow truncating to a
 * filesystem block boundary, but it's simpler to just forbid all truncates ---
 * and we already forbid all other contents modifications without the key.)
 *
 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
 * if a problem occurred while setting up the encryption key.
 */
static inline int fscrypt_prepare_setattr(struct dentry *dentry,
					  struct iattr *attr)
{
	if (IS_ENCRYPTED(d_inode(dentry)))
		return __fscrypt_prepare_setattr(dentry, attr);
	return 0;
}

/**
 * fscrypt_encrypt_symlink() - encrypt the symlink target if needed
 * @inode: symlink inode
 * @target: plaintext symlink target
 * @len: length of @target excluding null terminator
 * @disk_link: (in/out) the on-disk symlink target being prepared
 *
 * If the symlink target needs to be encrypted, then this function encrypts it
 * into @disk_link->name.  fscrypt_prepare_symlink() must have been called
 * previously to compute @disk_link->len.  If the filesystem did not allocate a
 * buffer for @disk_link->name after calling fscrypt_prepare_link(), then one
 * will be kmalloc()'ed and the filesystem will be responsible for freeing it.
 *
 * Return: 0 on success, -errno on failure
 */
static inline int fscrypt_encrypt_symlink(struct inode *inode,
					  const char *target,
					  unsigned int len,
					  struct fscrypt_str *disk_link)
{
	if (IS_ENCRYPTED(inode))
		return __fscrypt_encrypt_symlink(inode, target, len, disk_link);
	return 0;
}

/* If *pagep is a bounce page, free it and set *pagep to the pagecache page */
static inline void fscrypt_finalize_bounce_page(struct page **pagep)
{
	struct page *page = *pagep;

	if (fscrypt_is_bounce_page(page)) {
		*pagep = fscrypt_pagecache_page(page);
		fscrypt_free_bounce_page(page);
	}
}

#endif	/* _LINUX_FSCRYPT_H */