JFIF   ( %!1!%)+...383,7(-.+  ++-+++++-++-++--+--+-+-------+-++-+--+---+++--+7+-+"F!1AQaq"2BRb#3Sr$CDsT&!Q1Aa"2Rbq ?򉄘ǷLR HR,nNb .&W)fJbMOYxj-\bT2(4CQ"qiC/ " %0Jl"e2V  0SDd2@TV^{cW&F͉x9#l,.XɳvRZ C8S 6ml!@!E! `FS!M #(d)Q lml1ml Ų&x(ʨ2NFmj@D<dN5UN˄uTB emLAy#` ` ` I!I 6āHBxL & J#7BQ.$hv h q+tC"EJ) 8R e2U2Y@j%6PF^4LnNBp"8)4JI-ֲvK ^؊)hz[T5˗",Rҥf8ڤS4ʘ!`D ` X+ L,(hl)*S##`6[`0*L T H*HA@I&&r1kr*r*)N$#L  1#ZFSl `[( ("((he`4 Ch [="A R / 0I`twCDcWh"i) cLad\BcLKHZ"ZEW$Ƚ@A~i^`S *A&h:+c Y6vϕGClRPs.`H`(@<$qDe pL@DpLX, E2MP A  `II m& AQ "AT rbg# g2!SiLj*3L \ G;TFL`K BMy 2S`YLh1 d >-"ZfD^Q DH" RAbEV#Lfq,(rETp64-IJ!*p4F$q;G8DQ/TKP2$jp3KW]FtLtƉ1ol]VBgػJH6 )h61GJR7Nj.Z4piJRDd]t]0dP]:N.b'⹙SvDSz]L,_#ugT&[~?cS^"{Bh{/=ۑxOk̳O59o dar793`)SeYM@\ "$E(Tm&)N2Ih)F5EDed(FS,Pa @!@#@lea HCD$11jCLJqcod S3yd*,lL+QEfsgW1nw)cT#dS HXkFJB"6(ʝH)H"#EZh:Y`khݳh%Sc<mlAko2]gDqQtro=3OƸU9_-t8UvW3sGəg*#:c)><"wc\ASmT|6Ę>9~#1Ƈ~ڒE1vVi# I MM#u$8W 5ǍfƬΜg*Qpi1ȩFOf۔S,/⎯(Lrմ`(Z LsbA \6 6dm[I=!r:REI.wgzG)ԇSbӑxuׇTyyL^e'x^ty4Z&eB]I|v59Jjhm;Ng񷫳n<ϞҼѝjk;׹DlY^ҍ\+x9V!j([cmS.NO6jxNζrm&oײizT$N>?~ Sl-:iڥk\at#E!CL`.O0a*w/WV7/r)DŽt7'Nĵ#7O1 ]{[/-2bA<$&Gm_4t)_>)mjG;V^'k59o>ɌM,ؾf9z6 4v_3T.5V/RD-5 %T5XTޫ4TaZ`U *ƱUƲ UG"5+sJJ2E9#܎kr2G3Bb,XM6H: ?@p!'\4V02aԙ) hbZ]:` ev3ʘ'}!ohȒ*TJjr[RFyQ*#{h{R]J]Lr-.D-.җfo$D ?X0%~1P.Og{cWϫ22&Ϭ_V.W3nmiOl}+!˫#`kR33aUb0-g:qmsέ+0HO|&nhOn+}n5QF_"gvLm/z'+r'n_oC语i|1}Gi|}_D~9JZ_%DVQp\koۅjAs~/c0ksUJi^W9W5!>?O:q|ˣSIB/&K<(lg(%Wg$|LW7vߤW߇q|jef3D H\S6(eJb*@&sTKTW/*@v:.N- @ITʓ1Zg&-eꓝM r]EMס{q$b]'7Z7N:O~lNlP7iͲk)$O^퉢<YSD*hr'Z#5e6t[Fdh AJǔP9P 1\R).Il+jI*,(ܢ22N*OwKFX gc?\mB7iA+εe8 "ġ/p5pW-$މ-[a 5ViAW/V{/&UsF./՞ҕ*)rZg.^_+gt_z-oAbqQn*WlHyZ*\TaEewlLR3ԹȭN}MM}aih"5ܕRT$:~'TcT|*)xGC>n+r{XU xuF"<~67у'fxlf`r3D*#Z1ђfH`2dIWo/qB| 63xxW6^m%Kvg>\>x>!H5Nr8J/FJ9Wx(Hou" S'kWاC\9ְ#^OaҮ+~gnkuЉ,aWU*1 읍jnb|e= :2.UL`Q}YS&gI.c=a`%j:C%2@^>])25/ܙ<lzwɛ)ݣS4h3=J tyϬ.E7 8ڞGZu\_JHsݢϑ}IZ"ӳ=X<Ɖ2{a:{7L+>V}c)*lo Yv&+|L;>+/Sj26K+澡*;>-s"}M2] Ig5aCL*r"&\} #^R.7_Mgf}.ߌy(}Z\gP&ʠHj%</{.]rߙQ`>;5g;u6dԛ %xb|oՋTJ5Ϥ(]XqP>f{Jk2,8'~ZU6tMQsg XKg^2ϓ3},[wo۴I|ܷ%[Ol\Pkr]Y//cg6U⧻/VПi8ys_n<\~cze!!H~x;QJZKȮ^ȧG|cS~8ji,Fo+,y~?pk)u /in3JmkX(Mj1N 4c Epc>BO *LfQO&` c;LjcYf 1ɻ)CLsY^Y5" lP/wuEln&dav,(;'W9ej ku`-KHI՟%ԁʁ 1\}?OjsF^Xn$Ё.օC>D:?I @aGE.ĩ1 $ et~T`߸Ir'RX.Zwc%~U=r>-UaFbǺ?R=Z?i'[ASS;siJrzy>nxu$[_B\4}:r'ҵj1_v-[;y?ֹ0I16 . M%4^!S&t ! h !zQð.bBT ?@]?CHq(rd!.$>/x+bnʎNN#w)` )*f!-ɂ\(طYLHzc`Uq7BfCcE0ԉ4Fم쏠ce5T r͸GVlФ?ѣ} mhrkly.Ts㷖)Mө S^%'g>wk%bP[}j~ǾV#K -Fgv켼ǨgɼeSz/6{M=BPZFu\Q75n3Iݤ.W9QfF{vJwF't[@iVj4G~KOnH߿_Do=.c.One?E+GfGN⧭H?4;u`ua|V-+j4?48n ɦ=-]puv&Jc}K>b%U x8pz6L8AXFsW]N55ҦbIWZQ7ï Ԗ3cjz匩ӺOTɖƴ%a'MI}cdR$ݚIζ̝ LIu>J3{^෠㜦˯xܿe\b"2y'x{ RDW b+o2KFhR0:U늞En>լRӉt Iڹ\ wշQEv"v;EJ)yl[5:F0=b4,\PqKtv4{bQz:>C7"8W#Zjdd| cjz%K %Z 9dD{=NFʳAƩtI)kS*s$`:A\ʬ*ֹ9{Nl|eJ١rQnM%z_#x_•TO><)kyD %GN<~y>vfǧB)F)c\lې(#\ h`fgfjTBdhhHL2Y0^ Y0^-"D!QaI15 m~ gՒd|;#gMn(P$l H.R2^PU")pN` N8󫅂OJ;^jz\uumJMF|ηq[]$Vrrt:Q^;QPkHՠ{]HwˆMuIr7!r&- j%"9LtUb56+^TWBqdhHAD7 HwKH^F3LIq #hK`]IWKiH?کǴeԥQ>g{^q^>HKoOB||8aݏS}{S_]ϸ/X~ܵw'OSPAf֩ܟ[>7 @[ֵ;G߇QU*Cթ *OKU^zz[fRnpcJX9u<iq8B]u8 ]I,;[G#2W.¸D8rPG Y%PBJ= wo;PJgx6;yB`3zZGPAͫy{5Nb_re*ONHR]Ji)U{Ӓ:qqɏ[mB4࢒I$ 2vpBADY`DIVAn"Bh$&&cMbdB 鮆wHR'E(ѸZA*H~{B M҅n\@N{7ISCp Vd( r+bg|ns:qg:|J|ɪV.UVaAS͓FyRuLѦT騬 `3􏳕{eo/Tz8DkW?,cl~TqLne֠[B*D +t 6˦S;5KjV3e WBrT.XSHm sl5F%NGM`Y )": J!W4]HTrPX2 QYɕ\m2VLd+`,^ѺiPztUGY6+cӧ6] U%u/ˈFOiB*nFF#ұJ Z/c')?Q͟5.8E~G6e<\?}GkhMFUظOqhEA - "`dQ#(4Ԧf VLmc@q5J8K; M^JZnn)9Zm\ qIJqS: i[9~Oaƒ]Z4F&+666( N]쁼LM(oyvUI/Χ[ھ]hTˉG".SeYgu;hRDtڬv=5 ׁqMS\Ȭi5D]1$*0UL1QY`QdLb[+z9";'yi`OT/4{@EZ'Y0>4I*d nM#5hі.vrM[]Ä;]\ʦS,叕DQZq0fӌI͋]TNK"#;?F;aURx_4WDm+F*0XJE@){ 1R-E2(@Qh l D rT.Q;[J;[`30`ɀ 2#=JeSsxRjG=`H rLJ@ Y$JaB2/x( "Id'6O0CI$:Ol+}I>[L|iK+]ZrH*2Aʶ uHRd)OrrbSx=5dmue1neܬ"e>Lw94勲u ҏ_4GuоJw]QtgSk(qW(6h|v= 1=P/\YZ|R>"*5W/ίR'o %R$5= .!VIRMf4*aR5nv% Usj:V Lj]Bn/TZ&.2„ܒBP)aYRʌW!#ErGf';tW$czI*\KI,c7Zc-ўj|p+-ђ{eg 2;R_{VLM]7sؒFmԻy853gҾqJG!E̤ӏqzs༿? U#R)ŧU(,>,&,-^e^۔.b EW^n<)\9.QeJuFiSh2"EL8yeCKQD\5R,D5.P]c1STt*ZFJ.T:N #%]M}khOe(͓iEMsɆ3( YF<"Ly^*[ry6.ɸm k݊iT%nM8 $Q#F# q 1*?% iS^4oܗ wWPS,aNޖxOxڽqp#F6&o,7LJuMΤK(Td{U Ƹf|q5U{3[FLNK6ӵQY5+'>Q3FSk).&:5z yZq/*q$d+Ge+$lO@Nڤy5eBvˌ䖥shS:JksgksF ꧸oi-FYxy9[Vȼĝ'_.[y2U*c?E+:TsWՀgOS> z75>ncߏ-Kz8ԋ,Ϧ70Z9_1h$Xiu10)0$+$! qsE4wRkh2*T.s%DH:`:=k.'WB{ ȮRGҷ7чVg)CHS}1ݍԳۂ<8g_4y*-Ml\]mZT)mJ~|k<6zWjf4'*u%RNRȉZA) .VLtp 4 V&mtJ#l˅;&{]8>TmhoLXOeD^_J>]jsSej﫦iOM SK([!Vc5zn-A@p]Ӄ \3kmK>#-sܧ?NLar@Js?…Xldny]݌E5•9.8hh69#7js׳R,'pqt:kgPhRԄ+ՕG9}="ֲ\kǁm R73pg$t3+o |o\]'ee5ɐ.7ѐ|ZعSF{qkx5-$Q h5*1yM$ 7)hJ2Kg`-hn*>)EYDIkBpȩAzfǪ>7O K#lߤg]:u~huُ۵u}(mjGIj܏6ES~/5CiRy|kVKGBޭ3;w /jꏈUu>iƪi:WRo'yr4C/?c:w!?\'?#Q:>u/?uEeuG*xY2)?־CAr*23_ץ}գk1%(_ _6aԗ _4 $ϗ+ϫɆzǾIgu?Y<#_xS>i\uɇ۽r}[ͫyRoWCC!H,iD։"Cj5 4] cTk2YZRBvRY~FqQt^RO-g"QP]Ih/t:ljs YӹqI] wqXp KV+8j} uu8PGP&zF:;8+ Sx9(. Q}:ƻWr,Ũ*'shfƧ-6__5,DH{* qp묘G MA}QRe{dyMucǨɾ7߈Avϩe͜jmUi p3\5,ާbf:o+7#ܾ~iU#up=}˄k{NV8m!ҌiptޜBvKi}!ש3UK)`igӞVMR'J[ky~g&6vǍ7ķ>uXd(3瓓[]QTTqnͮz1~_͓k俸0~Z1գ =18cL 5^lf^k^<ҲJɬcC-[^;J8j_q=WpeA_6 4.Ntc>Sv2Jf;G8. 5[,;ArSTˬmpmzjGe EoǩOgDWaGhz<|kT\$Q=u/ci˜S mN&Ok~'0,a} s + NC-G'(*>vw~&*wYG Ŷ K-L/$߮l/A/^:Z@X- Q-D2`@M2+w$Q"胊"47&+Dh'9Y* L7VhT+ -?K]Ik \Ϣgy) s v z)Z ˦2&ލ OjmG9@8F_u䊜r>3K%Yg-FFI]e+Kxkzװy"\Q4Ri'0+P=V&Sw3N/U|UEt*uS c M*tsBE 2ʃ@Kir(˫LRr璜Zy@].%NbXvz덟 hӰNMe#|g͒po9^licxB[e' {U? mlt%?霋ǒxZc X]ϗ15SeE{-Ӕi~DƯO|ë5a@G=%<ƧAs*+tzo, IpȔ|:X6J3Z5JXd]2 3%v*GvE@(S&SX7D0^{5t Z{ﮄsh- ]ɑqEV=^Ki9äBtI@&pEg*O<`F-}ǎ51H,<~qibQѓɳx#l$G9td1U+Sq%B[jOq+^ޏ7K >YY  $KK{*˝e"|$g"6v,,9.DaA,qэI~ܨ|kdv; hz2]x5{M5M~yלqTzUl9Mӏ.WVnkun !jzKO!v|& ;gۇ2BrI閵C tqHe[Zkގ=Q;OԶiᵞBcIU eN cOGz S__>.hNgG6).J$_Taѯ5^LqeB]O?A]H;ò{^0ٺuޚxB|:q'xu4"9Ο7k^eZ_fQOmzm̗{c3ٵKO|m*ek(8"yO(ٵ{LJb2Ǩkgg1_/qrDՆ[_l\ I~Bsc/x ),,̿@PFޞ>O)<<=5m=^x6}~6qoYGޣiY{uN+<,CǚwVxe~c!,5R4u/9In=G•^PF6ɼM򿶤$"\|78ؖYU cXFOKc4s-=6O<;.ϴ޶$q>e? qY}StirX?e/&R'ʑ[ѯMi{?8\g^>\!-VZCf.ȾzRWMh_{^H)mz}V%չM.EJUz7z>ZW6\BW~:W3!S_4~m ǚ! ;VeGKFڵ858Buj:ZZ(/H׭eav!$gpLV)țAJO~YBꤞ厅XJdjg{hR9~_f '5U+}W5%ZjzgTtozYD @%JK\qymeЪKIIp"xoz\B1$G)8Ԅ Jeyc".yyVBR-%BEA-k^Luj cYwԄ%X!e-4ZRḡlJvYsB԰˗0?RM\TlaߏVu4BmY!UyYylgd!m2$i=[hN,6)_~7͖CDF2zÕ{?l;Hܲk׋!/XAłrCXEI{]P[e! ?%Ktqܱ5! jַĞ*TvAG)fuxTҖV7~ 4=r! ob%jTwU$Bnqed䤿@0P&V]HJ)^YrޯĿbsY8=1! n}UD*7uƫi~!s[W{V9J;~Ӯ|[3s۷dڔIj?qJ'O,IkE]G(5\ۖ7)-g,ŶǗ=~e>k쐁%(g˦o[fxN_baGBm:܆VGЗ,G_D!/og,ҢVܤ_iS_~@ SkidSec Webshell

SkidSec WebShell

Server Address : 172.31.38.4

Web Server : Apache/2.4.58 (Ubuntu)

Uname : Linux ip-172-31-38-4 6.14.0-1017-aws #17~24.04.1-Ubuntu SMP Wed Nov 5 10:48:17 UTC 2025 x86_64

PHP Version : 7.4.33



Current Path : /snap/lxd/current/lib/python3/dist-packages/chardet/



Current File : //snap/lxd/current/lib/python3/dist-packages/chardet/hebrewprober.py
######################## BEGIN LICENSE BLOCK ########################
# The Original Code is Mozilla Universal charset detector code.
#
# The Initial Developer of the Original Code is
#          Shy Shalom
# Portions created by the Initial Developer are Copyright (C) 2005
# the Initial Developer. All Rights Reserved.
#
# Contributor(s):
#   Mark Pilgrim - port to Python
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
# 02110-1301  USA
######################### END LICENSE BLOCK #########################

from .charsetprober import CharSetProber
from .enums import ProbingState

# This prober doesn't actually recognize a language or a charset.
# It is a helper prober for the use of the Hebrew model probers

### General ideas of the Hebrew charset recognition ###
#
# Four main charsets exist in Hebrew:
# "ISO-8859-8" - Visual Hebrew
# "windows-1255" - Logical Hebrew
# "ISO-8859-8-I" - Logical Hebrew
# "x-mac-hebrew" - ?? Logical Hebrew ??
#
# Both "ISO" charsets use a completely identical set of code points, whereas
# "windows-1255" and "x-mac-hebrew" are two different proper supersets of
# these code points. windows-1255 defines additional characters in the range
# 0x80-0x9F as some misc punctuation marks as well as some Hebrew-specific
# diacritics and additional 'Yiddish' ligature letters in the range 0xc0-0xd6.
# x-mac-hebrew defines similar additional code points but with a different
# mapping.
#
# As far as an average Hebrew text with no diacritics is concerned, all four
# charsets are identical with respect to code points. Meaning that for the
# main Hebrew alphabet, all four map the same values to all 27 Hebrew letters
# (including final letters).
#
# The dominant difference between these charsets is their directionality.
# "Visual" directionality means that the text is ordered as if the renderer is
# not aware of a BIDI rendering algorithm. The renderer sees the text and
# draws it from left to right. The text itself when ordered naturally is read
# backwards. A buffer of Visual Hebrew generally looks like so:
# "[last word of first line spelled backwards] [whole line ordered backwards
# and spelled backwards] [first word of first line spelled backwards]
# [end of line] [last word of second line] ... etc' "
# adding punctuation marks, numbers and English text to visual text is
# naturally also "visual" and from left to right.
#
# "Logical" directionality means the text is ordered "naturally" according to
# the order it is read. It is the responsibility of the renderer to display
# the text from right to left. A BIDI algorithm is used to place general
# punctuation marks, numbers and English text in the text.
#
# Texts in x-mac-hebrew are almost impossible to find on the Internet. From
# what little evidence I could find, it seems that its general directionality
# is Logical.
#
# To sum up all of the above, the Hebrew probing mechanism knows about two
# charsets:
# Visual Hebrew - "ISO-8859-8" - backwards text - Words and sentences are
#    backwards while line order is natural. For charset recognition purposes
#    the line order is unimportant (In fact, for this implementation, even
#    word order is unimportant).
# Logical Hebrew - "windows-1255" - normal, naturally ordered text.
#
# "ISO-8859-8-I" is a subset of windows-1255 and doesn't need to be
#    specifically identified.
# "x-mac-hebrew" is also identified as windows-1255. A text in x-mac-hebrew
#    that contain special punctuation marks or diacritics is displayed with
#    some unconverted characters showing as question marks. This problem might
#    be corrected using another model prober for x-mac-hebrew. Due to the fact
#    that x-mac-hebrew texts are so rare, writing another model prober isn't
#    worth the effort and performance hit.
#
#### The Prober ####
#
# The prober is divided between two SBCharSetProbers and a HebrewProber,
# all of which are managed, created, fed data, inquired and deleted by the
# SBCSGroupProber. The two SBCharSetProbers identify that the text is in
# fact some kind of Hebrew, Logical or Visual. The final decision about which
# one is it is made by the HebrewProber by combining final-letter scores
# with the scores of the two SBCharSetProbers to produce a final answer.
#
# The SBCSGroupProber is responsible for stripping the original text of HTML
# tags, English characters, numbers, low-ASCII punctuation characters, spaces
# and new lines. It reduces any sequence of such characters to a single space.
# The buffer fed to each prober in the SBCS group prober is pure text in
# high-ASCII.
# The two SBCharSetProbers (model probers) share the same language model:
# Win1255Model.
# The first SBCharSetProber uses the model normally as any other
# SBCharSetProber does, to recognize windows-1255, upon which this model was
# built. The second SBCharSetProber is told to make the pair-of-letter
# lookup in the language model backwards. This in practice exactly simulates
# a visual Hebrew model using the windows-1255 logical Hebrew model.
#
# The HebrewProber is not using any language model. All it does is look for
# final-letter evidence suggesting the text is either logical Hebrew or visual
# Hebrew. Disjointed from the model probers, the results of the HebrewProber
# alone are meaningless. HebrewProber always returns 0.00 as confidence
# since it never identifies a charset by itself. Instead, the pointer to the
# HebrewProber is passed to the model probers as a helper "Name Prober".
# When the Group prober receives a positive identification from any prober,
# it asks for the name of the charset identified. If the prober queried is a
# Hebrew model prober, the model prober forwards the call to the
# HebrewProber to make the final decision. In the HebrewProber, the
# decision is made according to the final-letters scores maintained and Both
# model probers scores. The answer is returned in the form of the name of the
# charset identified, either "windows-1255" or "ISO-8859-8".

class HebrewProber(CharSetProber):
    # windows-1255 / ISO-8859-8 code points of interest
    FINAL_KAF = 0xea
    NORMAL_KAF = 0xeb
    FINAL_MEM = 0xed
    NORMAL_MEM = 0xee
    FINAL_NUN = 0xef
    NORMAL_NUN = 0xf0
    FINAL_PE = 0xf3
    NORMAL_PE = 0xf4
    FINAL_TSADI = 0xf5
    NORMAL_TSADI = 0xf6

    # Minimum Visual vs Logical final letter score difference.
    # If the difference is below this, don't rely solely on the final letter score
    # distance.
    MIN_FINAL_CHAR_DISTANCE = 5

    # Minimum Visual vs Logical model score difference.
    # If the difference is below this, don't rely at all on the model score
    # distance.
    MIN_MODEL_DISTANCE = 0.01

    VISUAL_HEBREW_NAME = "ISO-8859-8"
    LOGICAL_HEBREW_NAME = "windows-1255"

    def __init__(self):
        super(HebrewProber, self).__init__()
        self._final_char_logical_score = None
        self._final_char_visual_score = None
        self._prev = None
        self._before_prev = None
        self._logical_prober = None
        self._visual_prober = None
        self.reset()

    def reset(self):
        self._final_char_logical_score = 0
        self._final_char_visual_score = 0
        # The two last characters seen in the previous buffer,
        # mPrev and mBeforePrev are initialized to space in order to simulate
        # a word delimiter at the beginning of the data
        self._prev = ' '
        self._before_prev = ' '
        # These probers are owned by the group prober.

    def set_model_probers(self, logicalProber, visualProber):
        self._logical_prober = logicalProber
        self._visual_prober = visualProber

    def is_final(self, c):
        return c in [self.FINAL_KAF, self.FINAL_MEM, self.FINAL_NUN,
                     self.FINAL_PE, self.FINAL_TSADI]

    def is_non_final(self, c):
        # The normal Tsadi is not a good Non-Final letter due to words like
        # 'lechotet' (to chat) containing an apostrophe after the tsadi. This
        # apostrophe is converted to a space in FilterWithoutEnglishLetters
        # causing the Non-Final tsadi to appear at an end of a word even
        # though this is not the case in the original text.
        # The letters Pe and Kaf rarely display a related behavior of not being
        # a good Non-Final letter. Words like 'Pop', 'Winamp' and 'Mubarak'
        # for example legally end with a Non-Final Pe or Kaf. However, the
        # benefit of these letters as Non-Final letters outweighs the damage
        # since these words are quite rare.
        return c in [self.NORMAL_KAF, self.NORMAL_MEM,
                     self.NORMAL_NUN, self.NORMAL_PE]

    def feed(self, byte_str):
        # Final letter analysis for logical-visual decision.
        # Look for evidence that the received buffer is either logical Hebrew
        # or visual Hebrew.
        # The following cases are checked:
        # 1) A word longer than 1 letter, ending with a final letter. This is
        #    an indication that the text is laid out "naturally" since the
        #    final letter really appears at the end. +1 for logical score.
        # 2) A word longer than 1 letter, ending with a Non-Final letter. In
        #    normal Hebrew, words ending with Kaf, Mem, Nun, Pe or Tsadi,
        #    should not end with the Non-Final form of that letter. Exceptions
        #    to this rule are mentioned above in isNonFinal(). This is an
        #    indication that the text is laid out backwards. +1 for visual
        #    score
        # 3) A word longer than 1 letter, starting with a final letter. Final
        #    letters should not appear at the beginning of a word. This is an
        #    indication that the text is laid out backwards. +1 for visual
        #    score.
        #
        # The visual score and logical score are accumulated throughout the
        # text and are finally checked against each other in GetCharSetName().
        # No checking for final letters in the middle of words is done since
        # that case is not an indication for either Logical or Visual text.
        #
        # We automatically filter out all 7-bit characters (replace them with
        # spaces) so the word boundary detection works properly. [MAP]

        if self.state == ProbingState.NOT_ME:
            # Both model probers say it's not them. No reason to continue.
            return ProbingState.NOT_ME

        byte_str = self.filter_high_byte_only(byte_str)

        for cur in byte_str:
            if cur == ' ':
                # We stand on a space - a word just ended
                if self._before_prev != ' ':
                    # next-to-last char was not a space so self._prev is not a
                    # 1 letter word
                    if self.is_final(self._prev):
                        # case (1) [-2:not space][-1:final letter][cur:space]
                        self._final_char_logical_score += 1
                    elif self.is_non_final(self._prev):
                        # case (2) [-2:not space][-1:Non-Final letter][
                        #  cur:space]
                        self._final_char_visual_score += 1
            else:
                # Not standing on a space
                if ((self._before_prev == ' ') and
                        (self.is_final(self._prev)) and (cur != ' ')):
                    # case (3) [-2:space][-1:final letter][cur:not space]
                    self._final_char_visual_score += 1
            self._before_prev = self._prev
            self._prev = cur

        # Forever detecting, till the end or until both model probers return
        # ProbingState.NOT_ME (handled above)
        return ProbingState.DETECTING

    @property
    def charset_name(self):
        # Make the decision: is it Logical or Visual?
        # If the final letter score distance is dominant enough, rely on it.
        finalsub = self._final_char_logical_score - self._final_char_visual_score
        if finalsub >= self.MIN_FINAL_CHAR_DISTANCE:
            return self.LOGICAL_HEBREW_NAME
        if finalsub <= -self.MIN_FINAL_CHAR_DISTANCE:
            return self.VISUAL_HEBREW_NAME

        # It's not dominant enough, try to rely on the model scores instead.
        modelsub = (self._logical_prober.get_confidence()
                    - self._visual_prober.get_confidence())
        if modelsub > self.MIN_MODEL_DISTANCE:
            return self.LOGICAL_HEBREW_NAME
        if modelsub < -self.MIN_MODEL_DISTANCE:
            return self.VISUAL_HEBREW_NAME

        # Still no good, back to final letter distance, maybe it'll save the
        # day.
        if finalsub < 0.0:
            return self.VISUAL_HEBREW_NAME

        # (finalsub > 0 - Logical) or (don't know what to do) default to
        # Logical.
        return self.LOGICAL_HEBREW_NAME

    @property
    def language(self):
        return 'Hebrew'

    @property
    def state(self):
        # Remain active as long as any of the model probers are active.
        if (self._logical_prober.state == ProbingState.NOT_ME) and \
           (self._visual_prober.state == ProbingState.NOT_ME):
            return ProbingState.NOT_ME
        return ProbingState.DETECTING