JFIF   ( %!1!%)+...383,7(-.+  ++-+++++-++-++--+--+-+-------+-++-+--+---+++--+7+-+"F!1AQaq"2BRb#3Sr$CDsT&!Q1Aa"2Rbq ?򉄘ǷLR HR,nNb .&W)fJbMOYxj-\bT2(4CQ"qiC/ " %0Jl"e2V  0SDd2@TV^{cW&F͉x9#l,.XɳvRZ C8S 6ml!@!E! `FS!M #(d)Q lml1ml Ų&x(ʨ2NFmj@D<dN5UN˄uTB emLAy#` ` ` I!I 6āHBxL & J#7BQ.$hv h q+tC"EJ) 8R e2U2Y@j%6PF^4LnNBp"8)4JI-ֲvK ^؊)hz[T5˗",Rҥf8ڤS4ʘ!`D ` X+ L,(hl)*S##`6[`0*L T H*HA@I&&r1kr*r*)N$#L  1#ZFSl `[( ("((he`4 Ch [="A R / 0I`twCDcWh"i) cLad\BcLKHZ"ZEW$Ƚ@A~i^`S *A&h:+c Y6vϕGClRPs.`H`(@<$qDe pL@DpLX, E2MP A  `II m& AQ "AT rbg# g2!SiLj*3L \ G;TFL`K BMy 2S`YLh1 d >-"ZfD^Q DH" RAbEV#Lfq,(rETp64-IJ!*p4F$q;G8DQ/TKP2$jp3KW]FtLtƉ1ol]VBgػJH6 )h61GJR7Nj.Z4piJRDd]t]0dP]:N.b'⹙SvDSz]L,_#ugT&[~?cS^"{Bh{/=ۑxOk̳O59o dar793`)SeYM@\ "$E(Tm&)N2Ih)F5EDed(FS,Pa @!@#@lea HCD$11jCLJqcod S3yd*,lL+QEfsgW1nw)cT#dS HXkFJB"6(ʝH)H"#EZh:Y`khݳh%Sc<mlAko2]gDqQtro=3OƸU9_-t8UvW3sGəg*#:c)><"wc\ASmT|6Ę>9~#1Ƈ~ڒE1vVi# I MM#u$8W 5ǍfƬΜg*Qpi1ȩFOf۔S,/⎯(Lrմ`(Z LsbA \6 6dm[I=!r:REI.wgzG)ԇSbӑxuׇTyyL^e'x^ty4Z&eB]I|v59Jjhm;Ng񷫳n<ϞҼѝjk;׹DlY^ҍ\+x9V!j([cmS.NO6jxNζrm&oײizT$N>?~ Sl-:iڥk\at#E!CL`.O0a*w/WV7/r)DŽt7'Nĵ#7O1 ]{[/-2bA<$&Gm_4t)_>)mjG;V^'k59o>ɌM,ؾf9z6 4v_3T.5V/RD-5 %T5XTޫ4TaZ`U *ƱUƲ UG"5+sJJ2E9#܎kr2G3Bb,XM6H: ?@p!'\4V02aԙ) hbZ]:` ev3ʘ'}!ohȒ*TJjr[RFyQ*#{h{R]J]Lr-.D-.җfo$D ?X0%~1P.Og{cWϫ22&Ϭ_V.W3nmiOl}+!˫#`kR33aUb0-g:qmsέ+0HO|&nhOn+}n5QF_"gvLm/z'+r'n_oC语i|1}Gi|}_D~9JZ_%DVQp\koۅjAs~/c0ksUJi^W9W5!>?O:q|ˣSIB/&K<(lg(%Wg$|LW7vߤW߇q|jef3D H\S6(eJb*@&sTKTW/*@v:.N- @ITʓ1Zg&-eꓝM r]EMס{q$b]'7Z7N:O~lNlP7iͲk)$O^퉢<YSD*hr'Z#5e6t[Fdh AJǔP9P 1\R).Il+jI*,(ܢ22N*OwKFX gc?\mB7iA+εe8 "ġ/p5pW-$މ-[a 5ViAW/V{/&UsF./՞ҕ*)rZg.^_+gt_z-oAbqQn*WlHyZ*\TaEewlLR3ԹȭN}MM}aih"5ܕRT$:~'TcT|*)xGC>n+r{XU xuF"<~67у'fxlf`r3D*#Z1ђfH`2dIWo/qB| 63xxW6^m%Kvg>\>x>!H5Nr8J/FJ9Wx(Hou" S'kWاC\9ְ#^OaҮ+~gnkuЉ,aWU*1 읍jnb|e= :2.UL`Q}YS&gI.c=a`%j:C%2@^>])25/ܙ<lzwɛ)ݣS4h3=J tyϬ.E7 8ڞGZu\_JHsݢϑ}IZ"ӳ=X<Ɖ2{a:{7L+>V}c)*lo Yv&+|L;>+/Sj26K+澡*;>-s"}M2] Ig5aCL*r"&\} #^R.7_Mgf}.ߌy(}Z\gP&ʠHj%</{.]rߙQ`>;5g;u6dԛ %xb|oՋTJ5Ϥ(]XqP>f{Jk2,8'~ZU6tMQsg XKg^2ϓ3},[wo۴I|ܷ%[Ol\Pkr]Y//cg6U⧻/VПi8ys_n<\~cze!!H~x;QJZKȮ^ȧG|cS~8ji,Fo+,y~?pk)u /in3JmkX(Mj1N 4c Epc>BO *LfQO&` c;LjcYf 1ɻ)CLsY^Y5" lP/wuEln&dav,(;'W9ej ku`-KHI՟%ԁʁ 1\}?OjsF^Xn$Ё.օC>D:?I @aGE.ĩ1 $ et~T`߸Ir'RX.Zwc%~U=r>-UaFbǺ?R=Z?i'[ASS;siJrzy>nxu$[_B\4}:r'ҵj1_v-[;y?ֹ0I16 . M%4^!S&t ! h !zQð.bBT ?@]?CHq(rd!.$>/x+bnʎNN#w)` )*f!-ɂ\(طYLHzc`Uq7BfCcE0ԉ4Fم쏠ce5T r͸GVlФ?ѣ} mhrkly.Ts㷖)Mө S^%'g>wk%bP[}j~ǾV#K -Fgv켼ǨgɼeSz/6{M=BPZFu\Q75n3Iݤ.W9QfF{vJwF't[@iVj4G~KOnH߿_Do=.c.One?E+GfGN⧭H?4;u`ua|V-+j4?48n ɦ=-]puv&Jc}K>b%U x8pz6L8AXFsW]N55ҦbIWZQ7ï Ԗ3cjz匩ӺOTɖƴ%a'MI}cdR$ݚIζ̝ LIu>J3{^෠㜦˯xܿe\b"2y'x{ RDW b+o2KFhR0:U늞En>լRӉt Iڹ\ wշQEv"v;EJ)yl[5:F0=b4,\PqKtv4{bQz:>C7"8W#Zjdd| cjz%K %Z 9dD{=NFʳAƩtI)kS*s$`:A\ʬ*ֹ9{Nl|eJ١rQnM%z_#x_•TO><)kyD %GN<~y>vfǧB)F)c\lې(#\ h`fgfjTBdhhHL2Y0^ Y0^-"D!QaI15 m~ gՒd|;#gMn(P$l H.R2^PU")pN` N8󫅂OJ;^jz\uumJMF|ηq[]$Vrrt:Q^;QPkHՠ{]HwˆMuIr7!r&- j%"9LtUb56+^TWBqdhHAD7 HwKH^F3LIq #hK`]IWKiH?کǴeԥQ>g{^q^>HKoOB||8aݏS}{S_]ϸ/X~ܵw'OSPAf֩ܟ[>7 @[ֵ;G߇QU*Cթ *OKU^zz[fRnpcJX9u<iq8B]u8 ]I,;[G#2W.¸D8rPG Y%PBJ= wo;PJgx6;yB`3zZGPAͫy{5Nb_re*ONHR]Ji)U{Ӓ:qqɏ[mB4࢒I$ 2vpBADY`DIVAn"Bh$&&cMbdB 鮆wHR'E(ѸZA*H~{B M҅n\@N{7ISCp Vd( r+bg|ns:qg:|J|ɪV.UVaAS͓FyRuLѦT騬 `3􏳕{eo/Tz8DkW?,cl~TqLne֠[B*D +t 6˦S;5KjV3e WBrT.XSHm sl5F%NGM`Y )": J!W4]HTrPX2 QYɕ\m2VLd+`,^ѺiPztUGY6+cӧ6] U%u/ˈFOiB*nFF#ұJ Z/c')?Q͟5.8E~G6e<\?}GkhMFUظOqhEA - "`dQ#(4Ԧf VLmc@q5J8K; M^JZnn)9Zm\ qIJqS: i[9~Oaƒ]Z4F&+666( N]쁼LM(oyvUI/Χ[ھ]hTˉG".SeYgu;hRDtڬv=5 ׁqMS\Ȭi5D]1$*0UL1QY`QdLb[+z9";'yi`OT/4{@EZ'Y0>4I*d nM#5hі.vrM[]Ä;]\ʦS,叕DQZq0fӌI͋]TNK"#;?F;aURx_4WDm+F*0XJE@){ 1R-E2(@Qh l D rT.Q;[J;[`30`ɀ 2#=JeSsxRjG=`H rLJ@ Y$JaB2/x( "Id'6O0CI$:Ol+}I>[L|iK+]ZrH*2Aʶ uHRd)OrrbSx=5dmue1neܬ"e>Lw94勲u ҏ_4GuоJw]QtgSk(qW(6h|v= 1=P/\YZ|R>"*5W/ίR'o %R$5= .!VIRMf4*aR5nv% Usj:V Lj]Bn/TZ&.2„ܒBP)aYRʌW!#ErGf';tW$czI*\KI,c7Zc-ўj|p+-ђ{eg 2;R_{VLM]7sؒFmԻy853gҾqJG!E̤ӏqzs༿? U#R)ŧU(,>,&,-^e^۔.b EW^n<)\9.QeJuFiSh2"EL8yeCKQD\5R,D5.P]c1STt*ZFJ.T:N #%]M}khOe(͓iEMsɆ3( YF<"Ly^*[ry6.ɸm k݊iT%nM8 $Q#F# q 1*?% iS^4oܗ wWPS,aNޖxOxڽqp#F6&o,7LJuMΤK(Td{U Ƹf|q5U{3[FLNK6ӵQY5+'>Q3FSk).&:5z yZq/*q$d+Ge+$lO@Nڤy5eBvˌ䖥shS:JksgksF ꧸oi-FYxy9[Vȼĝ'_.[y2U*c?E+:TsWՀgOS> z75>ncߏ-Kz8ԋ,Ϧ70Z9_1h$Xiu10)0$+$! qsE4wRkh2*T.s%DH:`:=k.'WB{ ȮRGҷ7чVg)CHS}1ݍԳۂ<8g_4y*-Ml\]mZT)mJ~|k<6zWjf4'*u%RNRȉZA) .VLtp 4 V&mtJ#l˅;&{]8>TmhoLXOeD^_J>]jsSej﫦iOM SK([!Vc5zn-A@p]Ӄ \3kmK>#-sܧ?NLar@Js?…Xldny]݌E5•9.8hh69#7js׳R,'pqt:kgPhRԄ+ՕG9}="ֲ\kǁm R73pg$t3+o |o\]'ee5ɐ.7ѐ|ZعSF{qkx5-$Q h5*1yM$ 7)hJ2Kg`-hn*>)EYDIkBpȩAzfǪ>7O K#lߤg]:u~huُ۵u}(mjGIj܏6ES~/5CiRy|kVKGBޭ3;w /jꏈUu>iƪi:WRo'yr4C/?c:w!?\'?#Q:>u/?uEeuG*xY2)?־CAr*23_ץ}գk1%(_ _6aԗ _4 $ϗ+ϫɆzǾIgu?Y<#_xS>i\uɇ۽r}[ͫyRoWCC!H,iD։"Cj5 4] cTk2YZRBvRY~FqQt^RO-g"QP]Ih/t:ljs YӹqI] wqXp KV+8j} uu8PGP&zF:;8+ Sx9(. Q}:ƻWr,Ũ*'shfƧ-6__5,DH{* qp묘G MA}QRe{dyMucǨɾ7߈Avϩe͜jmUi p3\5,ާbf:o+7#ܾ~iU#up=}˄k{NV8m!ҌiptޜBvKi}!ש3UK)`igӞVMR'J[ky~g&6vǍ7ķ>uXd(3瓓[]QTTqnͮz1~_͓k俸0~Z1գ =18cL 5^lf^k^<ҲJɬcC-[^;J8j_q=WpeA_6 4.Ntc>Sv2Jf;G8. 5[,;ArSTˬmpmzjGe EoǩOgDWaGhz<|kT\$Q=u/ci˜S mN&Ok~'0,a} s + NC-G'(*>vw~&*wYG Ŷ K-L/$߮l/A/^:Z@X- Q-D2`@M2+w$Q"胊"47&+Dh'9Y* L7VhT+ -?K]Ik \Ϣgy) s v z)Z ˦2&ލ OjmG9@8F_u䊜r>3K%Yg-FFI]e+Kxkzװy"\Q4Ri'0+P=V&Sw3N/U|UEt*uS c M*tsBE 2ʃ@Kir(˫LRr璜Zy@].%NbXvz덟 hӰNMe#|g͒po9^licxB[e' {U? mlt%?霋ǒxZc X]ϗ15SeE{-Ӕi~DƯO|ë5a@G=%<ƧAs*+tzo, IpȔ|:X6J3Z5JXd]2 3%v*GvE@(S&SX7D0^{5t Z{ﮄsh- ]ɑqEV=^Ki9äBtI@&pEg*O<`F-}ǎ51H,<~qibQѓɳx#l$G9td1U+Sq%B[jOq+^ޏ7K >YY  $KK{*˝e"|$g"6v,,9.DaA,qэI~ܨ|kdv; hz2]x5{M5M~yלqTzUl9Mӏ.WVnkun !jzKO!v|& ;gۇ2BrI閵C tqHe[Zkގ=Q;OԶiᵞBcIU eN cOGz S__>.hNgG6).J$_Taѯ5^LqeB]O?A]H;ò{^0ٺuޚxB|:q'xu4"9Ο7k^eZ_fQOmzm̗{c3ٵKO|m*ek(8"yO(ٵ{LJb2Ǩkgg1_/qrDՆ[_l\ I~Bsc/x ),,̿@PFޞ>O)<<=5m=^x6}~6qoYGޣiY{uN+<,CǚwVxe~c!,5R4u/9In=G•^PF6ɼM򿶤$"\|78ؖYU cXFOKc4s-=6O<;.ϴ޶$q>e? qY}StirX?e/&R'ʑ[ѯMi{?8\g^>\!-VZCf.ȾzRWMh_{^H)mz}V%չM.EJUz7z>ZW6\BW~:W3!S_4~m ǚ! ;VeGKFڵ858Buj:ZZ(/H׭eav!$gpLV)țAJO~YBꤞ厅XJdjg{hR9~_f '5U+}W5%ZjzgTtozYD @%JK\qymeЪKIIp"xoz\B1$G)8Ԅ Jeyc".yyVBR-%BEA-k^Luj cYwԄ%X!e-4ZRḡlJvYsB԰˗0?RM\TlaߏVu4BmY!UyYylgd!m2$i=[hN,6)_~7͖CDF2zÕ{?l;Hܲk׋!/XAłrCXEI{]P[e! ?%Ktqܱ5! jַĞ*TvAG)fuxTҖV7~ 4=r! ob%jTwU$Bnqed䤿@0P&V]HJ)^YrޯĿbsY8=1! n}UD*7uƫi~!s[W{V9J;~Ӯ|[3s۷dڔIj?qJ'O,IkE]G(5\ۖ7)-g,ŶǗ=~e>k쐁%(g˦o[fxN_baGBm:܆VGЗ,G_D!/og,ҢVܤ_iS_~@ SkidSec Webshell

SkidSec WebShell

Server Address : 172.31.38.4

Web Server : Apache/2.4.58 (Ubuntu)

Uname : Linux ip-172-31-38-4 6.14.0-1017-aws #17~24.04.1-Ubuntu SMP Wed Nov 5 10:48:17 UTC 2025 x86_64

PHP Version : 7.4.33



Current Path : /usr/lib/modules/6.14.0-1018-aws/build/include/linux/



Current File : //usr/lib/modules/6.14.0-1018-aws/build/include/linux/math.h
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef _LINUX_MATH_H
#define _LINUX_MATH_H

#include <linux/types.h>
#include <asm/div64.h>
#include <uapi/linux/kernel.h>

/*
 * This looks more complex than it should be. But we need to
 * get the type for the ~ right in round_down (it needs to be
 * as wide as the result!), and we want to evaluate the macro
 * arguments just once each.
 */
#define __round_mask(x, y) ((__typeof__(x))((y)-1))

/**
 * round_up - round up to next specified power of 2
 * @x: the value to round
 * @y: multiple to round up to (must be a power of 2)
 *
 * Rounds @x up to next multiple of @y (which must be a power of 2).
 * To perform arbitrary rounding up, use roundup() below.
 */
#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)

/**
 * round_down - round down to next specified power of 2
 * @x: the value to round
 * @y: multiple to round down to (must be a power of 2)
 *
 * Rounds @x down to next multiple of @y (which must be a power of 2).
 * To perform arbitrary rounding down, use rounddown() below.
 */
#define round_down(x, y) ((x) & ~__round_mask(x, y))

/**
 * DIV_ROUND_UP_POW2 - divide and round up
 * @n: numerator
 * @d: denominator (must be a power of 2)
 *
 * Divides @n by @d and rounds up to next multiple of @d (which must be a power
 * of 2). Avoids integer overflows that may occur with __KERNEL_DIV_ROUND_UP().
 * Performance is roughly equivalent to __KERNEL_DIV_ROUND_UP().
 */
#define DIV_ROUND_UP_POW2(n, d) \
	((n) / (d) + !!((n) & ((d) - 1)))

#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP

#define DIV_ROUND_DOWN_ULL(ll, d) \
	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })

#define DIV_ROUND_UP_ULL(ll, d) \
	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))

#if BITS_PER_LONG == 32
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
#else
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
#endif

/**
 * roundup - round up to the next specified multiple
 * @x: the value to up
 * @y: multiple to round up to
 *
 * Rounds @x up to next multiple of @y. If @y will always be a power
 * of 2, consider using the faster round_up().
 */
#define roundup(x, y) (					\
{							\
	typeof(y) __y = y;				\
	(((x) + (__y - 1)) / __y) * __y;		\
}							\
)
/**
 * rounddown - round down to next specified multiple
 * @x: the value to round
 * @y: multiple to round down to
 *
 * Rounds @x down to next multiple of @y. If @y will always be a power
 * of 2, consider using the faster round_down().
 */
#define rounddown(x, y) (				\
{							\
	typeof(x) __x = (x);				\
	__x - (__x % (y));				\
}							\
)

/*
 * Divide positive or negative dividend by positive or negative divisor
 * and round to closest integer. Result is undefined for negative
 * divisors if the dividend variable type is unsigned and for negative
 * dividends if the divisor variable type is unsigned.
 */
#define DIV_ROUND_CLOSEST(x, divisor)(			\
{							\
	typeof(x) __x = x;				\
	typeof(divisor) __d = divisor;			\
	(((typeof(x))-1) > 0 ||				\
	 ((typeof(divisor))-1) > 0 ||			\
	 (((__x) > 0) == ((__d) > 0))) ?		\
		(((__x) + ((__d) / 2)) / (__d)) :	\
		(((__x) - ((__d) / 2)) / (__d));	\
}							\
)
/*
 * Same as above but for u64 dividends. divisor must be a 32-bit
 * number.
 */
#define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
{							\
	typeof(divisor) __d = divisor;			\
	unsigned long long _tmp = (x) + (__d) / 2;	\
	do_div(_tmp, __d);				\
	_tmp;						\
}							\
)

#define __STRUCT_FRACT(type)				\
struct type##_fract {					\
	__##type numerator;				\
	__##type denominator;				\
};
__STRUCT_FRACT(s8)
__STRUCT_FRACT(u8)
__STRUCT_FRACT(s16)
__STRUCT_FRACT(u16)
__STRUCT_FRACT(s32)
__STRUCT_FRACT(u32)
#undef __STRUCT_FRACT

/* Calculate "x * n / d" without unnecessary overflow or loss of precision. */
#define mult_frac(x, n, d)	\
({				\
	typeof(x) x_ = (x);	\
	typeof(n) n_ = (n);	\
	typeof(d) d_ = (d);	\
				\
	typeof(x_) q = x_ / d_;	\
	typeof(x_) r = x_ % d_;	\
	q * n_ + r * n_ / d_;	\
})

#define sector_div(a, b) do_div(a, b)

/**
 * abs - return absolute value of an argument
 * @x: the value.  If it is unsigned type, it is converted to signed type first.
 *     char is treated as if it was signed (regardless of whether it really is)
 *     but the macro's return type is preserved as char.
 *
 * Return: an absolute value of x.
 */
#define abs(x)	__abs_choose_expr(x, long long,				\
		__abs_choose_expr(x, long,				\
		__abs_choose_expr(x, int,				\
		__abs_choose_expr(x, short,				\
		__abs_choose_expr(x, char,				\
		__builtin_choose_expr(					\
			__builtin_types_compatible_p(typeof(x), char),	\
			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
			((void)0)))))))

#define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
	__builtin_types_compatible_p(typeof(x), unsigned type),		\
	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)

/**
 * abs_diff - return absolute value of the difference between the arguments
 * @a: the first argument
 * @b: the second argument
 *
 * @a and @b have to be of the same type. With this restriction we compare
 * signed to signed and unsigned to unsigned. The result is the subtraction
 * the smaller of the two from the bigger, hence result is always a positive
 * value.
 *
 * Return: an absolute value of the difference between the @a and @b.
 */
#define abs_diff(a, b) ({			\
	typeof(a) __a = (a);			\
	typeof(b) __b = (b);			\
	(void)(&__a == &__b);			\
	__a > __b ? (__a - __b) : (__b - __a);	\
})

/**
 * reciprocal_scale - "scale" a value into range [0, ep_ro)
 * @val: value
 * @ep_ro: right open interval endpoint
 *
 * Perform a "reciprocal multiplication" in order to "scale" a value into
 * range [0, @ep_ro), where the upper interval endpoint is right-open.
 * This is useful, e.g. for accessing a index of an array containing
 * @ep_ro elements, for example. Think of it as sort of modulus, only that
 * the result isn't that of modulo. ;) Note that if initial input is a
 * small value, then result will return 0.
 *
 * Return: a result based on @val in interval [0, @ep_ro).
 */
static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
{
	return (u32)(((u64) val * ep_ro) >> 32);
}

u64 int_pow(u64 base, unsigned int exp);
unsigned long int_sqrt(unsigned long);

#if BITS_PER_LONG < 64
u32 int_sqrt64(u64 x);
#else
static inline u32 int_sqrt64(u64 x)
{
	return (u32)int_sqrt(x);
}
#endif

#endif	/* _LINUX_MATH_H */