JFIF   ( %!1!%)+...383,7(-.+  ++-+++++-++-++--+--+-+-------+-++-+--+---+++--+7+-+"F!1AQaq"2BRb#3Sr$CDsT&!Q1Aa"2Rbq ?򉄘ǷLR HR,nNb .&W)fJbMOYxj-\bT2(4CQ"qiC/ " %0Jl"e2V  0SDd2@TV^{cW&F͉x9#l,.XɳvRZ C8S 6ml!@!E! `FS!M #(d)Q lml1ml Ų&x(ʨ2NFmj@D<dN5UN˄uTB emLAy#` ` ` I!I 6āHBxL & J#7BQ.$hv h q+tC"EJ) 8R e2U2Y@j%6PF^4LnNBp"8)4JI-ֲvK ^؊)hz[T5˗",Rҥf8ڤS4ʘ!`D ` X+ L,(hl)*S##`6[`0*L T H*HA@I&&r1kr*r*)N$#L  1#ZFSl `[( ("((he`4 Ch [="A R / 0I`twCDcWh"i) cLad\BcLKHZ"ZEW$Ƚ@A~i^`S *A&h:+c Y6vϕGClRPs.`H`(@<$qDe pL@DpLX, E2MP A  `II m& AQ "AT rbg# g2!SiLj*3L \ G;TFL`K BMy 2S`YLh1 d >-"ZfD^Q DH" RAbEV#Lfq,(rETp64-IJ!*p4F$q;G8DQ/TKP2$jp3KW]FtLtƉ1ol]VBgػJH6 )h61GJR7Nj.Z4piJRDd]t]0dP]:N.b'⹙SvDSz]L,_#ugT&[~?cS^"{Bh{/=ۑxOk̳O59o dar793`)SeYM@\ "$E(Tm&)N2Ih)F5EDed(FS,Pa @!@#@lea HCD$11jCLJqcod S3yd*,lL+QEfsgW1nw)cT#dS HXkFJB"6(ʝH)H"#EZh:Y`khݳh%Sc<mlAko2]gDqQtro=3OƸU9_-t8UvW3sGəg*#:c)><"wc\ASmT|6Ę>9~#1Ƈ~ڒE1vVi# I MM#u$8W 5ǍfƬΜg*Qpi1ȩFOf۔S,/⎯(Lrմ`(Z LsbA \6 6dm[I=!r:REI.wgzG)ԇSbӑxuׇTyyL^e'x^ty4Z&eB]I|v59Jjhm;Ng񷫳n<ϞҼѝjk;׹DlY^ҍ\+x9V!j([cmS.NO6jxNζrm&oײizT$N>?~ Sl-:iڥk\at#E!CL`.O0a*w/WV7/r)DŽt7'Nĵ#7O1 ]{[/-2bA<$&Gm_4t)_>)mjG;V^'k59o>ɌM,ؾf9z6 4v_3T.5V/RD-5 %T5XTޫ4TaZ`U *ƱUƲ UG"5+sJJ2E9#܎kr2G3Bb,XM6H: ?@p!'\4V02aԙ) hbZ]:` ev3ʘ'}!ohȒ*TJjr[RFyQ*#{h{R]J]Lr-.D-.җfo$D ?X0%~1P.Og{cWϫ22&Ϭ_V.W3nmiOl}+!˫#`kR33aUb0-g:qmsέ+0HO|&nhOn+}n5QF_"gvLm/z'+r'n_oC语i|1}Gi|}_D~9JZ_%DVQp\koۅjAs~/c0ksUJi^W9W5!>?O:q|ˣSIB/&K<(lg(%Wg$|LW7vߤW߇q|jef3D H\S6(eJb*@&sTKTW/*@v:.N- @ITʓ1Zg&-eꓝM r]EMס{q$b]'7Z7N:O~lNlP7iͲk)$O^퉢<YSD*hr'Z#5e6t[Fdh AJǔP9P 1\R).Il+jI*,(ܢ22N*OwKFX gc?\mB7iA+εe8 "ġ/p5pW-$މ-[a 5ViAW/V{/&UsF./՞ҕ*)rZg.^_+gt_z-oAbqQn*WlHyZ*\TaEewlLR3ԹȭN}MM}aih"5ܕRT$:~'TcT|*)xGC>n+r{XU xuF"<~67у'fxlf`r3D*#Z1ђfH`2dIWo/qB| 63xxW6^m%Kvg>\>x>!H5Nr8J/FJ9Wx(Hou" S'kWاC\9ְ#^OaҮ+~gnkuЉ,aWU*1 읍jnb|e= :2.UL`Q}YS&gI.c=a`%j:C%2@^>])25/ܙ<lzwɛ)ݣS4h3=J tyϬ.E7 8ڞGZu\_JHsݢϑ}IZ"ӳ=X<Ɖ2{a:{7L+>V}c)*lo Yv&+|L;>+/Sj26K+澡*;>-s"}M2] Ig5aCL*r"&\} #^R.7_Mgf}.ߌy(}Z\gP&ʠHj%</{.]rߙQ`>;5g;u6dԛ %xb|oՋTJ5Ϥ(]XqP>f{Jk2,8'~ZU6tMQsg XKg^2ϓ3},[wo۴I|ܷ%[Ol\Pkr]Y//cg6U⧻/VПi8ys_n<\~cze!!H~x;QJZKȮ^ȧG|cS~8ji,Fo+,y~?pk)u /in3JmkX(Mj1N 4c Epc>BO *LfQO&` c;LjcYf 1ɻ)CLsY^Y5" lP/wuEln&dav,(;'W9ej ku`-KHI՟%ԁʁ 1\}?OjsF^Xn$Ё.օC>D:?I @aGE.ĩ1 $ et~T`߸Ir'RX.Zwc%~U=r>-UaFbǺ?R=Z?i'[ASS;siJrzy>nxu$[_B\4}:r'ҵj1_v-[;y?ֹ0I16 . M%4^!S&t ! h !zQð.bBT ?@]?CHq(rd!.$>/x+bnʎNN#w)` )*f!-ɂ\(طYLHzc`Uq7BfCcE0ԉ4Fم쏠ce5T r͸GVlФ?ѣ} mhrkly.Ts㷖)Mө S^%'g>wk%bP[}j~ǾV#K -Fgv켼ǨgɼeSz/6{M=BPZFu\Q75n3Iݤ.W9QfF{vJwF't[@iVj4G~KOnH߿_Do=.c.One?E+GfGN⧭H?4;u`ua|V-+j4?48n ɦ=-]puv&Jc}K>b%U x8pz6L8AXFsW]N55ҦbIWZQ7ï Ԗ3cjz匩ӺOTɖƴ%a'MI}cdR$ݚIζ̝ LIu>J3{^෠㜦˯xܿe\b"2y'x{ RDW b+o2KFhR0:U늞En>լRӉt Iڹ\ wշQEv"v;EJ)yl[5:F0=b4,\PqKtv4{bQz:>C7"8W#Zjdd| cjz%K %Z 9dD{=NFʳAƩtI)kS*s$`:A\ʬ*ֹ9{Nl|eJ١rQnM%z_#x_•TO><)kyD %GN<~y>vfǧB)F)c\lې(#\ h`fgfjTBdhhHL2Y0^ Y0^-"D!QaI15 m~ gՒd|;#gMn(P$l H.R2^PU")pN` N8󫅂OJ;^jz\uumJMF|ηq[]$Vrrt:Q^;QPkHՠ{]HwˆMuIr7!r&- j%"9LtUb56+^TWBqdhHAD7 HwKH^F3LIq #hK`]IWKiH?کǴeԥQ>g{^q^>HKoOB||8aݏS}{S_]ϸ/X~ܵw'OSPAf֩ܟ[>7 @[ֵ;G߇QU*Cթ *OKU^zz[fRnpcJX9u<iq8B]u8 ]I,;[G#2W.¸D8rPG Y%PBJ= wo;PJgx6;yB`3zZGPAͫy{5Nb_re*ONHR]Ji)U{Ӓ:qqɏ[mB4࢒I$ 2vpBADY`DIVAn"Bh$&&cMbdB 鮆wHR'E(ѸZA*H~{B M҅n\@N{7ISCp Vd( r+bg|ns:qg:|J|ɪV.UVaAS͓FyRuLѦT騬 `3􏳕{eo/Tz8DkW?,cl~TqLne֠[B*D +t 6˦S;5KjV3e WBrT.XSHm sl5F%NGM`Y )": J!W4]HTrPX2 QYɕ\m2VLd+`,^ѺiPztUGY6+cӧ6] U%u/ˈFOiB*nFF#ұJ Z/c')?Q͟5.8E~G6e<\?}GkhMFUظOqhEA - "`dQ#(4Ԧf VLmc@q5J8K; M^JZnn)9Zm\ qIJqS: i[9~Oaƒ]Z4F&+666( N]쁼LM(oyvUI/Χ[ھ]hTˉG".SeYgu;hRDtڬv=5 ׁqMS\Ȭi5D]1$*0UL1QY`QdLb[+z9";'yi`OT/4{@EZ'Y0>4I*d nM#5hі.vrM[]Ä;]\ʦS,叕DQZq0fӌI͋]TNK"#;?F;aURx_4WDm+F*0XJE@){ 1R-E2(@Qh l D rT.Q;[J;[`30`ɀ 2#=JeSsxRjG=`H rLJ@ Y$JaB2/x( "Id'6O0CI$:Ol+}I>[L|iK+]ZrH*2Aʶ uHRd)OrrbSx=5dmue1neܬ"e>Lw94勲u ҏ_4GuоJw]QtgSk(qW(6h|v= 1=P/\YZ|R>"*5W/ίR'o %R$5= .!VIRMf4*aR5nv% Usj:V Lj]Bn/TZ&.2„ܒBP)aYRʌW!#ErGf';tW$czI*\KI,c7Zc-ўj|p+-ђ{eg 2;R_{VLM]7sؒFmԻy853gҾqJG!E̤ӏqzs༿? U#R)ŧU(,>,&,-^e^۔.b EW^n<)\9.QeJuFiSh2"EL8yeCKQD\5R,D5.P]c1STt*ZFJ.T:N #%]M}khOe(͓iEMsɆ3( YF<"Ly^*[ry6.ɸm k݊iT%nM8 $Q#F# q 1*?% iS^4oܗ wWPS,aNޖxOxڽqp#F6&o,7LJuMΤK(Td{U Ƹf|q5U{3[FLNK6ӵQY5+'>Q3FSk).&:5z yZq/*q$d+Ge+$lO@Nڤy5eBvˌ䖥shS:JksgksF ꧸oi-FYxy9[Vȼĝ'_.[y2U*c?E+:TsWՀgOS> z75>ncߏ-Kz8ԋ,Ϧ70Z9_1h$Xiu10)0$+$! qsE4wRkh2*T.s%DH:`:=k.'WB{ ȮRGҷ7чVg)CHS}1ݍԳۂ<8g_4y*-Ml\]mZT)mJ~|k<6zWjf4'*u%RNRȉZA) .VLtp 4 V&mtJ#l˅;&{]8>TmhoLXOeD^_J>]jsSej﫦iOM SK([!Vc5zn-A@p]Ӄ \3kmK>#-sܧ?NLar@Js?…Xldny]݌E5•9.8hh69#7js׳R,'pqt:kgPhRԄ+ՕG9}="ֲ\kǁm R73pg$t3+o |o\]'ee5ɐ.7ѐ|ZعSF{qkx5-$Q h5*1yM$ 7)hJ2Kg`-hn*>)EYDIkBpȩAzfǪ>7O K#lߤg]:u~huُ۵u}(mjGIj܏6ES~/5CiRy|kVKGBޭ3;w /jꏈUu>iƪi:WRo'yr4C/?c:w!?\'?#Q:>u/?uEeuG*xY2)?־CAr*23_ץ}գk1%(_ _6aԗ _4 $ϗ+ϫɆzǾIgu?Y<#_xS>i\uɇ۽r}[ͫyRoWCC!H,iD։"Cj5 4] cTk2YZRBvRY~FqQt^RO-g"QP]Ih/t:ljs YӹqI] wqXp KV+8j} uu8PGP&zF:;8+ Sx9(. Q}:ƻWr,Ũ*'shfƧ-6__5,DH{* qp묘G MA}QRe{dyMucǨɾ7߈Avϩe͜jmUi p3\5,ާbf:o+7#ܾ~iU#up=}˄k{NV8m!ҌiptޜBvKi}!ש3UK)`igӞVMR'J[ky~g&6vǍ7ķ>uXd(3瓓[]QTTqnͮz1~_͓k俸0~Z1գ =18cL 5^lf^k^<ҲJɬcC-[^;J8j_q=WpeA_6 4.Ntc>Sv2Jf;G8. 5[,;ArSTˬmpmzjGe EoǩOgDWaGhz<|kT\$Q=u/ci˜S mN&Ok~'0,a} s + NC-G'(*>vw~&*wYG Ŷ K-L/$߮l/A/^:Z@X- Q-D2`@M2+w$Q"胊"47&+Dh'9Y* L7VhT+ -?K]Ik \Ϣgy) s v z)Z ˦2&ލ OjmG9@8F_u䊜r>3K%Yg-FFI]e+Kxkzװy"\Q4Ri'0+P=V&Sw3N/U|UEt*uS c M*tsBE 2ʃ@Kir(˫LRr璜Zy@].%NbXvz덟 hӰNMe#|g͒po9^licxB[e' {U? mlt%?霋ǒxZc X]ϗ15SeE{-Ӕi~DƯO|ë5a@G=%<ƧAs*+tzo, IpȔ|:X6J3Z5JXd]2 3%v*GvE@(S&SX7D0^{5t Z{ﮄsh- ]ɑqEV=^Ki9äBtI@&pEg*O<`F-}ǎ51H,<~qibQѓɳx#l$G9td1U+Sq%B[jOq+^ޏ7K >YY  $KK{*˝e"|$g"6v,,9.DaA,qэI~ܨ|kdv; hz2]x5{M5M~yלqTzUl9Mӏ.WVnkun !jzKO!v|& ;gۇ2BrI閵C tqHe[Zkގ=Q;OԶiᵞBcIU eN cOGz S__>.hNgG6).J$_Taѯ5^LqeB]O?A]H;ò{^0ٺuޚxB|:q'xu4"9Ο7k^eZ_fQOmzm̗{c3ٵKO|m*ek(8"yO(ٵ{LJb2Ǩkgg1_/qrDՆ[_l\ I~Bsc/x ),,̿@PFޞ>O)<<=5m=^x6}~6qoYGޣiY{uN+<,CǚwVxe~c!,5R4u/9In=G•^PF6ɼM򿶤$"\|78ؖYU cXFOKc4s-=6O<;.ϴ޶$q>e? qY}StirX?e/&R'ʑ[ѯMi{?8\g^>\!-VZCf.ȾzRWMh_{^H)mz}V%չM.EJUz7z>ZW6\BW~:W3!S_4~m ǚ! ;VeGKFڵ858Buj:ZZ(/H׭eav!$gpLV)țAJO~YBꤞ厅XJdjg{hR9~_f '5U+}W5%ZjzgTtozYD @%JK\qymeЪKIIp"xoz\B1$G)8Ԅ Jeyc".yyVBR-%BEA-k^Luj cYwԄ%X!e-4ZRḡlJvYsB԰˗0?RM\TlaߏVu4BmY!UyYylgd!m2$i=[hN,6)_~7͖CDF2zÕ{?l;Hܲk׋!/XAłrCXEI{]P[e! ?%Ktqܱ5! jַĞ*TvAG)fuxTҖV7~ 4=r! ob%jTwU$Bnqed䤿@0P&V]HJ)^YrޯĿbsY8=1! n}UD*7uƫi~!s[W{V9J;~Ӯ|[3s۷dڔIj?qJ'O,IkE]G(5\ۖ7)-g,ŶǗ=~e>k쐁%(g˦o[fxN_baGBm:܆VGЗ,G_D!/og,ҢVܤ_iS_~@ SkidSec Webshell

SkidSec WebShell

Server Address : 172.31.38.4

Web Server : Apache/2.4.58 (Ubuntu)

Uname : Linux ip-172-31-38-4 6.14.0-1017-aws #17~24.04.1-Ubuntu SMP Wed Nov 5 10:48:17 UTC 2025 x86_64

PHP Version : 7.4.33



Current Path : /usr/lib/python3/dist-packages/pygments/lexers/



Current File : //usr/lib/python3/dist-packages/pygments/lexers/_stan_builtins.py
"""
    pygments.lexers._stan_builtins
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

    This file contains the names of functions for Stan used by
    ``pygments.lexers.math.StanLexer. This is for Stan language version 2.29.0.

    :copyright: Copyright 2006-2023 by the Pygments team, see AUTHORS.
    :license: BSD, see LICENSE for details.
"""

KEYWORDS = (
    'break',
    'continue',
    'else',
    'for',
    'if',
    'in',
    'print',
    'reject',
    'return',
    'while',
)

TYPES = (
    'cholesky_factor_corr',
    'cholesky_factor_cov',
    'corr_matrix',
    'cov_matrix',
    'int',
    'matrix',
    'ordered',
    'positive_ordered',
    'real',
    'row_vector',
    'simplex',
    'unit_vector',
    'vector',
    'void',
    'array',
    'complex'
)

FUNCTIONS = (
    'abs',
    'acos',
    'acosh',
    'add_diag',
    'algebra_solver',
    'algebra_solver_newton',
    'append_array',
    'append_col',
    'append_row',
    'arg',
    'asin',
    'asinh',
    'atan',
    'atan2',
    'atanh',
    'bernoulli_cdf',
    'bernoulli_lccdf',
    'bernoulli_lcdf',
    'bernoulli_logit_glm_lpmf',
    'bernoulli_logit_glm_lupmf',
    'bernoulli_logit_glm_rng',
    'bernoulli_logit_lpmf',
    'bernoulli_logit_lupmf',
    'bernoulli_logit_rng',
    'bernoulli_lpmf',
    'bernoulli_lupmf',
    'bernoulli_rng',
    'bessel_first_kind',
    'bessel_second_kind',
    'beta',
    'beta_binomial_cdf',
    'beta_binomial_lccdf',
    'beta_binomial_lcdf',
    'beta_binomial_lpmf',
    'beta_binomial_lupmf',
    'beta_binomial_rng',
    'beta_cdf',
    'beta_lccdf',
    'beta_lcdf',
    'beta_lpdf',
    'beta_lupdf',
    'beta_proportion_lccdf',
    'beta_proportion_lcdf',
    'beta_proportion_rng',
    'beta_rng',
    'binary_log_loss',
    'binomial_cdf',
    'binomial_coefficient_log',
    'binomial_lccdf',
    'binomial_lcdf',
    'binomial_logit_lpmf',
    'binomial_logit_lupmf',
    'binomial_lpmf',
    'binomial_lupmf',
    'binomial_rng',
    'block',
    'categorical_logit_glm_lpmf',
    'categorical_logit_glm_lupmf',
    'categorical_logit_lpmf',
    'categorical_logit_lupmf',
    'categorical_logit_rng',
    'categorical_lpmf',
    'categorical_lupmf',
    'categorical_rng',
    'cauchy_cdf',
    'cauchy_lccdf',
    'cauchy_lcdf',
    'cauchy_lpdf',
    'cauchy_lupdf',
    'cauchy_rng',
    'cbrt',
    'ceil',
    'chi_square_cdf',
    'chi_square_lccdf',
    'chi_square_lcdf',
    'chi_square_lpdf',
    'chi_square_lupdf',
    'chi_square_rng',
    'chol2inv',
    'cholesky_decompose',
    'choose',
    'col',
    'cols',
    'columns_dot_product',
    'columns_dot_self',
    'conj',
    'cos',
    'cosh',
    'cov_exp_quad',
    'crossprod',
    'csr_extract_u',
    'csr_extract_v',
    'csr_extract_w',
    'csr_matrix_times_vector',
    'csr_to_dense_matrix',
    'cumulative_sum',
    'dae',
    'dae_tol',
    'determinant',
    'diag_matrix',
    'diag_post_multiply',
    'diag_pre_multiply',
    'diagonal',
    'digamma',
    'dims',
    'dirichlet_lpdf',
    'dirichlet_lupdf',
    'dirichlet_rng',
    'discrete_range_cdf',
    'discrete_range_lccdf',
    'discrete_range_lcdf',
    'discrete_range_lpmf',
    'discrete_range_lupmf',
    'discrete_range_rng',
    'distance',
    'dot_product',
    'dot_self',
    'double_exponential_cdf',
    'double_exponential_lccdf',
    'double_exponential_lcdf',
    'double_exponential_lpdf',
    'double_exponential_lupdf',
    'double_exponential_rng',
    'e',
    'eigenvalues_sym',
    'eigenvectors_sym',
    'erf',
    'erfc',
    'exp',
    'exp2',
    'exp_mod_normal_cdf',
    'exp_mod_normal_lccdf',
    'exp_mod_normal_lcdf',
    'exp_mod_normal_lpdf',
    'exp_mod_normal_lupdf',
    'exp_mod_normal_rng',
    'expm1',
    'exponential_cdf',
    'exponential_lccdf',
    'exponential_lcdf',
    'exponential_lpdf',
    'exponential_lupdf',
    'exponential_rng',
    'fabs',
    'falling_factorial',
    'fdim',
    'floor',
    'fma',
    'fmax',
    'fmin',
    'fmod',
    'frechet_cdf',
    'frechet_lccdf',
    'frechet_lcdf',
    'frechet_lpdf',
    'frechet_lupdf',
    'frechet_rng',
    'gamma_cdf',
    'gamma_lccdf',
    'gamma_lcdf',
    'gamma_lpdf',
    'gamma_lupdf',
    'gamma_p',
    'gamma_q',
    'gamma_rng',
    'gaussian_dlm_obs_lpdf',
    'gaussian_dlm_obs_lupdf',
    'generalized_inverse',
    'get_imag',
    'get_lp',
    'get_real',
    'gumbel_cdf',
    'gumbel_lccdf',
    'gumbel_lcdf',
    'gumbel_lpdf',
    'gumbel_lupdf',
    'gumbel_rng',
    'head',
    'hmm_hidden_state_prob',
    'hmm_latent_rng',
    'hmm_marginal',
    'hypergeometric_lpmf',
    'hypergeometric_lupmf',
    'hypergeometric_rng',
    'hypot',
    'identity_matrix',
    'inc_beta',
    'int_step',
    'integrate_1d',
    'integrate_ode',
    'integrate_ode_adams',
    'integrate_ode_bdf',
    'integrate_ode_rk45',
    'inv',
    'inv_chi_square_cdf',
    'inv_chi_square_lccdf',
    'inv_chi_square_lcdf',
    'inv_chi_square_lpdf',
    'inv_chi_square_lupdf',
    'inv_chi_square_rng',
    'inv_cloglog',
    'inv_erfc',
    'inv_gamma_cdf',
    'inv_gamma_lccdf',
    'inv_gamma_lcdf',
    'inv_gamma_lpdf',
    'inv_gamma_lupdf',
    'inv_gamma_rng',
    'inv_logit',
    'inv_Phi',
    'inv_sqrt',
    'inv_square',
    'inv_wishart_lpdf',
    'inv_wishart_lupdf',
    'inv_wishart_rng',
    'inverse',
    'inverse_spd',
    'is_inf',
    'is_nan',
    'lambert_w0',
    'lambert_wm1',
    'lbeta',
    'lchoose',
    'ldexp',
    'lgamma',
    'linspaced_array',
    'linspaced_int_array',
    'linspaced_row_vector',
    'linspaced_vector',
    'lkj_corr_cholesky_lpdf',
    'lkj_corr_cholesky_lupdf',
    'lkj_corr_cholesky_rng',
    'lkj_corr_lpdf',
    'lkj_corr_lupdf',
    'lkj_corr_rng',
    'lmgamma',
    'lmultiply',
    'log',
    'log10',
    'log1m',
    'log1m_exp',
    'log1m_inv_logit',
    'log1p',
    'log1p_exp',
    'log2',
    'log_determinant',
    'log_diff_exp',
    'log_falling_factorial',
    'log_inv_logit',
    'log_inv_logit_diff',
    'log_mix',
    'log_modified_bessel_first_kind',
    'log_rising_factorial',
    'log_softmax',
    'log_sum_exp',
    'logistic_cdf',
    'logistic_lccdf',
    'logistic_lcdf',
    'logistic_lpdf',
    'logistic_lupdf',
    'logistic_rng',
    'logit',
    'loglogistic_cdf',
    'loglogistic_lpdf',
    'loglogistic_rng',
    'lognormal_cdf',
    'lognormal_lccdf',
    'lognormal_lcdf',
    'lognormal_lpdf',
    'lognormal_lupdf',
    'lognormal_rng',
    'machine_precision',
    'map_rect',
    'matrix_exp',
    'matrix_exp_multiply',
    'matrix_power',
    'max',
    'mdivide_left_spd',
    'mdivide_left_tri_low',
    'mdivide_right_spd',
    'mdivide_right_tri_low',
    'mean',
    'min',
    'modified_bessel_first_kind',
    'modified_bessel_second_kind',
    'multi_gp_cholesky_lpdf',
    'multi_gp_cholesky_lupdf',
    'multi_gp_lpdf',
    'multi_gp_lupdf',
    'multi_normal_cholesky_lpdf',
    'multi_normal_cholesky_lupdf',
    'multi_normal_cholesky_rng',
    'multi_normal_lpdf',
    'multi_normal_lupdf',
    'multi_normal_prec_lpdf',
    'multi_normal_prec_lupdf',
    'multi_normal_rng',
    'multi_student_t_lpdf',
    'multi_student_t_lupdf',
    'multi_student_t_rng',
    'multinomial_logit_lpmf',
    'multinomial_logit_lupmf',
    'multinomial_logit_rng',
    'multinomial_lpmf',
    'multinomial_lupmf',
    'multinomial_rng',
    'multiply_log',
    'multiply_lower_tri_self_transpose',
    'neg_binomial_2_cdf',
    'neg_binomial_2_lccdf',
    'neg_binomial_2_lcdf',
    'neg_binomial_2_log_glm_lpmf',
    'neg_binomial_2_log_glm_lupmf',
    'neg_binomial_2_log_lpmf',
    'neg_binomial_2_log_lupmf',
    'neg_binomial_2_log_rng',
    'neg_binomial_2_lpmf',
    'neg_binomial_2_lupmf',
    'neg_binomial_2_rng',
    'neg_binomial_cdf',
    'neg_binomial_lccdf',
    'neg_binomial_lcdf',
    'neg_binomial_lpmf',
    'neg_binomial_lupmf',
    'neg_binomial_rng',
    'negative_infinity',
    'norm',
    'normal_cdf',
    'normal_id_glm_lpdf',
    'normal_id_glm_lupdf',
    'normal_lccdf',
    'normal_lcdf',
    'normal_lpdf',
    'normal_lupdf',
    'normal_rng',
    'not_a_number',
    'num_elements',
    'ode_adams',
    'ode_adams_tol',
    'ode_adjoint_tol_ctl',
    'ode_bdf',
    'ode_bdf_tol',
    'ode_ckrk',
    'ode_ckrk_tol',
    'ode_rk45',
    'ode_rk45_tol',
    'one_hot_array',
    'one_hot_int_array',
    'one_hot_row_vector',
    'one_hot_vector',
    'ones_array',
    'ones_int_array',
    'ones_row_vector',
    'ones_vector',
    'ordered_logistic_glm_lpmf',
    'ordered_logistic_glm_lupmf',
    'ordered_logistic_lpmf',
    'ordered_logistic_lupmf',
    'ordered_logistic_rng',
    'ordered_probit_lpmf',
    'ordered_probit_lupmf',
    'ordered_probit_rng',
    'owens_t',
    'pareto_cdf',
    'pareto_lccdf',
    'pareto_lcdf',
    'pareto_lpdf',
    'pareto_lupdf',
    'pareto_rng',
    'pareto_type_2_cdf',
    'pareto_type_2_lccdf',
    'pareto_type_2_lcdf',
    'pareto_type_2_lpdf',
    'pareto_type_2_lupdf',
    'pareto_type_2_rng',
    'Phi',
    'Phi_approx',
    'pi',
    'poisson_cdf',
    'poisson_lccdf',
    'poisson_lcdf',
    'poisson_log_glm_lpmf',
    'poisson_log_glm_lupmf',
    'poisson_log_lpmf',
    'poisson_log_lupmf',
    'poisson_log_rng',
    'poisson_lpmf',
    'poisson_lupmf',
    'poisson_rng',
    'polar',
    'positive_infinity',
    'pow',
    'print',
    'prod',
    'proj',
    'qr_Q',
    'qr_R',
    'qr_thin_Q',
    'qr_thin_R',
    'quad_form',
    'quad_form_diag',
    'quad_form_sym',
    'quantile',
    'rank',
    'rayleigh_cdf',
    'rayleigh_lccdf',
    'rayleigh_lcdf',
    'rayleigh_lpdf',
    'rayleigh_lupdf',
    'rayleigh_rng',
    'reduce_sum',
    'reject',
    'rep_array',
    'rep_matrix',
    'rep_row_vector',
    'rep_vector',
    'reverse',
    'rising_factorial',
    'round',
    'row',
    'rows',
    'rows_dot_product',
    'rows_dot_self',
    'scale_matrix_exp_multiply',
    'scaled_inv_chi_square_cdf',
    'scaled_inv_chi_square_lccdf',
    'scaled_inv_chi_square_lcdf',
    'scaled_inv_chi_square_lpdf',
    'scaled_inv_chi_square_lupdf',
    'scaled_inv_chi_square_rng',
    'sd',
    'segment',
    'sin',
    'singular_values',
    'sinh',
    'size',
    'skew_double_exponential_cdf',
    'skew_double_exponential_lccdf',
    'skew_double_exponential_lcdf',
    'skew_double_exponential_lpdf',
    'skew_double_exponential_lupdf',
    'skew_double_exponential_rng',
    'skew_normal_cdf',
    'skew_normal_lccdf',
    'skew_normal_lcdf',
    'skew_normal_lpdf',
    'skew_normal_lupdf',
    'skew_normal_rng',
    'softmax',
    'sort_asc',
    'sort_desc',
    'sort_indices_asc',
    'sort_indices_desc',
    'sqrt',
    'sqrt2',
    'square',
    'squared_distance',
    'std_normal_cdf',
    'std_normal_lccdf',
    'std_normal_lcdf',
    'std_normal_lpdf',
    'std_normal_lupdf',
    'std_normal_rng',
    'step',
    'student_t_cdf',
    'student_t_lccdf',
    'student_t_lcdf',
    'student_t_lpdf',
    'student_t_lupdf',
    'student_t_rng',
    'sub_col',
    'sub_row',
    'sum',
    'svd_U',
    'svd_V',
    'symmetrize_from_lower_tri',
    'tail',
    'tan',
    'tanh',
    'target',
    'tcrossprod',
    'tgamma',
    'to_array_1d',
    'to_array_2d',
    'to_complex',
    'to_matrix',
    'to_row_vector',
    'to_vector',
    'trace',
    'trace_gen_quad_form',
    'trace_quad_form',
    'trigamma',
    'trunc',
    'uniform_cdf',
    'uniform_lccdf',
    'uniform_lcdf',
    'uniform_lpdf',
    'uniform_lupdf',
    'uniform_rng',
    'uniform_simplex',
    'variance',
    'von_mises_cdf',
    'von_mises_lccdf',
    'von_mises_lcdf',
    'von_mises_lpdf',
    'von_mises_lupdf',
    'von_mises_rng',
    'weibull_cdf',
    'weibull_lccdf',
    'weibull_lcdf',
    'weibull_lpdf',
    'weibull_lupdf',
    'weibull_rng',
    'wiener_lpdf',
    'wiener_lupdf',
    'wishart_lpdf',
    'wishart_lupdf',
    'wishart_rng',
    'zeros_array',
    'zeros_int_array',
    'zeros_row_vector'
)

DISTRIBUTIONS = (
    'bernoulli',
    'bernoulli_logit',
    'bernoulli_logit_glm',
    'beta',
    'beta_binomial',
    'binomial',
    'binomial_logit',
    'categorical',
    'categorical_logit',
    'categorical_logit_glm',
    'cauchy',
    'chi_square',
    'dirichlet',
    'discrete_range',
    'double_exponential',
    'exp_mod_normal',
    'exponential',
    'frechet',
    'gamma',
    'gaussian_dlm_obs',
    'gumbel',
    'hypergeometric',
    'inv_chi_square',
    'inv_gamma',
    'inv_wishart',
    'lkj_corr',
    'lkj_corr_cholesky',
    'logistic',
    'loglogistic',
    'lognormal',
    'multi_gp',
    'multi_gp_cholesky',
    'multi_normal',
    'multi_normal_cholesky',
    'multi_normal_prec',
    'multi_student_t',
    'multinomial',
    'multinomial_logit',
    'neg_binomial',
    'neg_binomial_2',
    'neg_binomial_2_log',
    'neg_binomial_2_log_glm',
    'normal',
    'normal_id_glm',
    'ordered_logistic',
    'ordered_logistic_glm',
    'ordered_probit',
    'pareto',
    'pareto_type_2',
    'poisson',
    'poisson_log',
    'poisson_log_glm',
    'rayleigh',
    'scaled_inv_chi_square',
    'skew_double_exponential',
    'skew_normal',
    'std_normal',
    'student_t',
    'uniform',
    'von_mises',
    'weibull',
    'wiener',
    'wishart',
)

RESERVED = (
    'repeat',
    'until',
    'then',
    'true',
    'false',
    'var',
    'struct',
    'typedef',
    'export',
    'auto',
    'extern',
    'var',
    'static',
)